UNIVERSITI TEKNOLOGI MARA

A COMPARATIVE ANALYSIS OF PERSISTENT HOMOLOGY AND DISCRETE WAVELET TRANSFORM IN BREAST MAMMOGRAPHY IMAGE CLASSIFICATION USING CONVOLUTIONAL NEURAL NETWORK

NUR AFIDAH BINTI RAHIM HASLINDA BINTI BASRI

Bachelor of Science (Hons.) Mathematics

ABSTRACT

Breast cancer is one of the top causes of death among women worldwide. Early detection through mammography plays a crucial role in improving survival rates. As the most widely used imaging technique for early breast cancer screening, mammography is often regarded as the "gold standard". However, due to poor image quality, it is hard to diagnose cancer accurately. This study compares two advanced methods, Persistent Homology (PH) from Topological Data Analysis, and a signal processing method is Discrete Wavelet Transform (DWT) for effectiveness in filtering and feature extraction on images of the breast mammography. The study used Digital Database for Screening Mammography (DDSM), which includes images containing microcalcifications. Both methods were used to preprocess the images and extract features that were used for classification. The PH features consisted of persistent image and persistent entropy, while DWT features such as mean, energy, standard deviation, Shannon's entropy, kurtosis and skewness. Based on these features, a Convolutional Neural Network (CNN) was used to classify the images to either benign or malignant. The comparative analysis indicate that PH provides more accuracy and outperforms DWT in all performance metrics. The best results of PH were achieved at the filter level 0.3 with accuracy at 97.55%, precision at 96.18%, f-measure at 97.62%, sensitivity at 99.20%, and specificity at 95.97%. This implies that PH is more effective in capturing image details which makes it better for utilize in deep learning model. These findings may help improve breast cancer screening by supporting earlier and more accurate diagnosis.

TABLE OF CONTENTS

		Page
SUP	PERVISOR'S APPROVAL	i
AUT	THOR'S DECLARATION	ii
ABS	STRACT	iii
ACI	KNOWLEDGEMENT	iv
TAE	BLE OF CONTENTS	v
LIS	CT OF TABLES	viii
LIS	T OF FIGURES	ix
LIS	xi	
LIS	T OF ABBREVIATIONS	xii
CHA	APTER ONE INTRODUCTION	1
1.1	Overview	1
1.2	Research Background	1
1.3	Problem Statement	3
1.4	Research Objectives	3
1.5	Significance of Study	4
1.6	Limitation	4
1.7	Scope of Study	5
1.8	Definition of Terms	5
CHA	APTER TWO LITERATURE REVIEW	6
2.1	Overview	6
2.2	Image Processing in Mammography Image A	Analysis 6
	2.2.1 Image Preprocessing	7
	2.2.2 Feature Extraction	8
2.3	Persistent Homology (PH) in Image Processi	ing 9
	2.3.1 Cubical Complexes	10
	2.3.2 Persistence Diagram	11
	2.3.3 Vectorized Topological Features	12

	2.3.4	Application of PH in Image Analysis	13
2.4	Wavelet Transform		
	2.4.1	Types of Wavelet Transform	16
	2.4.2	Discrete Wavelet Transform	17
	2.4.3	The Concept of Multi-Resolution Analysis	18
	2.4.4	Wavelet Filtering	19
	2.4.5	Wavelet Features	20
	2.4.6	Applications DWT in Image Analysis	20
2.5	Gaps 1	between Persistent Homology and Discrete Wavelet Transform	24
СНА	PTER T	THREE RESEARCH METHODOLOGY	25
3.1	Overv	iew	25
3.2	Phase	1: Dataset Acquisition	26
3.3	Phase	2: Preprocessing	27
	3.3.1	PH Filtering	28
	3.3.2	Wavelet Filtering	37
3.4	Phase	3: Feature Extraction	47
	3.4.1	PH Features	47
	3.4.2	Wavelet Features	53
3.5	Phase	4: Classification by using Convolutional Neural Network (CNN)	56
3.6	Phase 5: Comparison Performance		
	3.6.1	Confusion Matrix	58
СНА	PTER 1	FOUR RESULT AND DISCUSSION	61
4.1	Overv	iew	61
4.2	Results of PH Filtering and Feature Extraction		61
	4.2.1	PH Filter Evaluation	61
	4.2.2	PH Feature Extraction	64
	4.2.3	PH Performances	66
4.3	Results of DWT Filtering and Feature Extraction		
	4.3.1	DWT Filter Threshold Evaluation	69
	4.3.2	DWT Feature Extraction	71
	4.3.3	DWT Performances	73

APPI	APPENDICES		
REFERENCES			
5.3	Recommendations	87	
5.2	Conclusion	86	
5.1	Overview	86	
СНА	PTER FIVE CONCLUSION AND RECOMMENDATIONS	86	
4.6	Comparative Discussion of PH and DWT	84	
	4.5.2 DWT Feature Extraction	82	
	4.5.1 DWT Filter Threshold Evaluation	81	
4.5	Discussion on DWT Filtering and Feature Extraction	81	
	4.4.1 PH and Structural Patterns	77	
4.4	Discussion on PH Filtering and Feature Extraction		