

UNIVERSITI TEKNOLOGI MARA

**SYNTHESIS, CHARACTERIZATION AND
CONDUCTIVITY STUDIES OF CONJUGATED
CYCLIC SCHIFF BASE COMPOUNDS DERIVED
FROM SUBSTITUTED SALICYLALDEHYDE AND
PHENYLENEDIAMINE DERIVATIVES**

MUHAMAD FARIDZ BIN OSMAN

Thesis submitted in fulfillment
of the requirements for the degree of
Masters of Science

Faculty of Applied Sciences

March 2017

ABSTRACT

Organic semiconductors have considerable important over the past decades because of its easy preparation. Schiff base ligand is one example of organic semiconductor. Six conjugated Schiff base ligands were synthesized by condensation of phenylenediamine derivatives and substituted salicylaldehyde namely L1, L2, L3, L4, L5 and L6. Metal complexes of L1 and L2 were prepared using cobalt(II) acetate tetrahydrate, copper(II) acetate monohydrate, nickel(II) acetate tetrahydrate and zinc(II) acetate dihydrate by *in-situ* method. All compounds were characterized by elemental analysis, NMR spectroscopy, infrared spectroscopy, UV-Visible spectroscopy and magnetic susceptibility measurements. Conductivity measurements were done using EIS method. The C=N peaks appeared in the range of 1607 – 1622 cm⁻¹ for all Schiff base ligands indicates the formation of Schiff base ligand. The C=N band is shifted to lower frequency after complexation with metal ions. Complexation occurs by coordination of nitrogen to the metal ion. This was proven by the presence of M-N peak at 500 – 543 cm⁻¹. All metal complexes were suggested to exhibit tetrahedral or square planar geometries based on magnetic susceptibility measurements. Co(II) metal complexes having magnetic moments 3.67 and 3.60 BM for L1Co and L2Co respectively. The magnetic moments of Cu(II) complexes lie in the range 1.83 – 1.87 BM. Conductivity studies and the optical band gap of these compounds were investigated to determine their conductivity values and band gap energy. The conductivity value of synthesized compounds were obtained in the range of 10⁻⁸ – 10⁻⁵ Scm⁻¹ which include in organic semiconductor range between 10⁻⁹ and 10³ Scm⁻¹. Both ligands L1 and L2 show higher conductivity value compared to all their metal complexes. Conductivity value of L1 is 1.37 x 10⁻⁷ while its metal complexes L1Co, L1Ni, L1Cu and L1Zn are 9.31 x 10⁻⁸, 8.97 x 10⁻⁸, 7.55 x 10⁻⁸ and 1.63 x 10⁻⁸ Scm⁻¹ respectively. The band gap energy for L1 is 1.56 eV while its metal complexes L1Co, L1Ni, L1Cu and L1Zn are 2.69, 3.17, 2.76 and 2.53 eV respectively. Generally, the optical band gap energy supports the conductivity value as the lower band gap energy indicates higher conductivity value. This study presents a beneficial basis to further apply in electronic industrial application especially in semiconductor.

ACKNOWLEDGEMENT

Alhamdulillah, first and above all, I praise Allah, the almighty for providing me this opportunity and granting me the capability to proceed successfully. This thesis appears in its current form due to the assistance and guidance also supports of several people. I would therefore like to offer my sincere thanks to all of them. Dr. Karimah Kassim, the one and only my supervisor, my cordial thanks for accepting me as a Masters student, her warm encouragement, thoughtful guidance, critical comments, and correction of the thesis. Thank you for the trust, the insightful discussion, offering valuable advice, for the support during the whole period of the study, and especially for her patience and guidance during the writing process. She consistently allowed this thesis to be my own work, but steered me in the right direction whenever she thought I needed it.

I would like to thank the members of the Coordination Chemistry Group (CCG) especially Prof. Dr. Hadariah Bahron for giving me advices and encourage me to finish up this thesis. She also make an effort in organizing a few writing workshop to help CCG student to write a better thesis and papers. Thank you very much Prof. Thank you also to other members of CCG, Dr. Amalina, Dr. Nor Zakiah, Aliyin, Muneera Fatin, Nur Illane, Zailelah, Nurlaila, Ahmad Fauzi and others for being there when I need them.

Special appreciation to Pusat Pengajian Siswazah family that assists me in solving problems regarding postgraduate matters since first day I became a postgraduate student. Thank you very much to Assoc. Prof. Dr. Sharifah Aminah Syed Mohamad, Assoc. Prof. Dr. Ahmad Saat, Dr. Khalilah Abdul Khalil, Dr. Zuraida Khusaimi, Pn. Juhaida Abd Aziz, Pn. Musliha Mohd Yusof, and Pn. Noorizan Abd Majid.

Thank you to all research officers, science officers, assistant engineer and laboratory assistants for helping me to characterize my samples and allow me to learn to use the instruments. This appreciation goes to En. Ahmad Kambali, Pn. Zaleha, Pn. Nurul Wahida, Pn. Irmaizatussyehdany, Pn. Masni, Cik Shaheda, En. Mohd. Kadim, En. Muhamad Faizal, En. Mohammad Saiful Izuan, En. Mohd Azlan Jaafar, En. Azizul Zahariman, En. Mohd Khairul Tajudin, Pn. Suriati Jaafar and those who I forgot to mention here. Without your assistance, I cannot finish my thesis as well as my study.

I also appreciate the financial support of the Ministry of Higher Education Malaysia for Fundamental Research Grant Scheme (FRGS) during my study and for MyMaster scholarship financing my study fees for four semesters. Thank you to UiTM for SKS and UPTA for the financial support for six semesters.

I cannot finish without thanking my family. I warmly thank and appreciate my mother, and my sisters, Farah Diana and Fairuz Akhma for being good sisters to me. For my niece, Nur Zakirah Umairah, thank you for being a part of my family and make us cheerful. For my late father, Osman Ahmad, I hope you were proud of your only son. I love you. Al-Fatihah.

TABLE OF CONTENTS

	Page
CONFIRMATION BY PANEL OF EXAMINERS	ii
AUTHOR'S DECLARATION	iii
ABSTRACT	iv
ACKNOWLEDGEMENTS	v
TABLE OF CONTENTS	vi
LIST OF TABLES	ix
LIST OF FIGURES	x
LIST OF ABBREVIATIONS	xiii

CHAPTER ONE: INTRODUCTION

1.1 Background of Studies	1
1.1.1 Coordination Chemistry	1
1.1.2 Schiff Base Ligands	3
1.1.3 Semiconductor	5
1.2 Problem Statements	7
1.3 Significance of Study	8
1.4 Objectives	8
1.5 Scope of Limitations	9

CHAPTER TWO: LITERATURE REVIEW

2.1 Schiff Base Ligand and Metal Complexes	12
2.2 Conductivity Studies	20
2.3 Optical Properties	24

CHAPTER ONE

INTRODUCTION

1.1 BACKGROUND OF STUDIES

1.1.1 Coordination Chemistry

The coordination chemistry history begins when Tassaert discovered $\text{Co}(\text{NH}_3)_6\text{Cl}_3$ in 1798. But then Werner systematized the theory in 1893. Sir R.S. Nyholm acknowledged that major developments in inorganic chemistry had been in the field of coordination chemistry (Banerjea, 1993). Coordination chemistry is the study of compounds formed between metal ions and other neutral or negatively charged molecules (Cartere, 2008). Coordination chemistry is one of the most significant research areas in inorganic chemistry and plays a very major role in our lives. The study of them has contributed to the highest degree of understanding the chemical bond in inorganic chemistry. One definition of a metal complex or coordination compound is a compound formed from a Lewis acid and a Brønsted base; a Lewis acid being an electron pair acceptor and a Brønsted base a proton acceptor. Metal ions and organic ligands are the two significant components for preparing the coordination compounds (Sarkar et al. 2008). According to the modern concept, even the organometallic compounds belong to the general class of coordination compounds and a host of such compounds of a large majority of metals have been synthesized with a wide variety of organic substrate (Banerjea, 1993).

A survey of the literature shows that coordination chemistry covers diverse fields such as dyes, colour photography, mineral extraction, nuclear fuels, toxicology, bioinorganic chemistry, inorganic solid state chemistry, organometallic chemistry, analytical chemistry, medicine, catalysis, material science, ceramics, microelectronics, photonics, as well as semiconductors (Cartere, 2008). Not all coordination compounds were prepared in the laboratories. Some of them naturally occurred such as in the human and plants living systems. The living system is partially supported by coordination compounds such as hemoglobin, myoglobin, chlorophyll and cytochromes. Figure 1.1 shows the structure of chlorophyll *a*, a specific form of chlorophyll used in oxygenic