UNIVERSITI TEKNOLOGI MARA

DETECTION OF MET GENE COPY NUMBER IN A549 CELL LINE BY POLYMERASE CHAIN REACTION (PCR)

WAN NAFISAH BINTI WAN HAMAT

BACHELOR OF PHARMACY (Hons.)

ACKNOWLEDGEMENTS

In the name of Allah, the Most Gracious, the Most Merciful, praise be to Allah, the Almighty for granting me the capability to complete this thesis successfully.

Firstly, I would like to express my conspicuous gratitude to Dr Rosmadi Mohd Yusoff, my research supervisor, for his warm encouragement, patient guidance, valuable advice and support. I am extremely thankful and indebted to him for his willingness to give his time so generously.

I am also indebted to one of the post-graduate student, Miss Nurul Syahidah Mohd Yusof for her assistance in running the program in the laboratories and participation in the analysis of the results.

I would also like to express my heart-felt gratitude to my family, for the constant source of love, unceasing encouragement, and concern. I am also grateful to all of my friends, especially my co-partners for their support and care in helping me to overcome setbacks on my thesis progress. I greatly value their help in keeping me to stay sane through these difficult moments.

Finally, I place on record, my warm gratitude to one and all who directly or indirectly have lent their hands in this venture.

TABLE OF CONTENTS

	Page
TITLE PAGE	
APPROVAL	
ACKNOWLEDGEMENTS	ii
TABLE OF CONTENTS	iii
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF ABBREVIATIONS	ix
LIST OF EQUATIONS	xi
ABSTRACT	xii
CHAPTER ONE: INTRODUCTION	1
1.1 Background of study	1
1.2 Objectives	5
1.3 Problem statement	5
1.4 Hypothesis	6
1.5 Significant of study	6
1.6 Limitation and scope of study	6
CHAPTER TWO: LITERITURE REVIEW	7
2.1 Cancer	7

ABSTRACT

MET gene copy number changes in lung cancer have been recognized as one of the contributors in the pathogenesis of lung cancer and lead to activation of MET. As that is the case, potential therapeutic therapy that specifically target MET gene for the treatment of lung cancer in the future can be developed. To determine the fold change of MET gene in cancer DNA versus normal human DNA, this study aims to find the relative changes in MET gene copy number using delta-delta Ct method in PCR reaction. The cancer DNA and normal human DNA was isolated each from cultured A549 cell line and normal human blood using the DNA isolation kit. Cancer DNA and normal human DNA were subjected to nucleic acid concentration measurement using a spectrophotometer. As described in a previous study done by Ishii et al., reverse and forward MET primers were designated. A housekeeping gene, RPLP0 was used as reference gene. The cancer DNA and normal human DNA was amplified using PCR. The amplification plot and melt curve report were analyzed and threshold cycle (Ct) was determined for each samples. The PCR data was normalized using RPLP0 gene. The fold change of MET gene copy number in cancer DNA relative to normal human DNA was calculated using delta-delta method by utilizing the Ct values of the amplification plot. The fold change of MET gene copy number was 0.08 fold. It was found that there are no differences in MET gene copy number in A549 cell line compared to normal human cell. This showed that MET gene copy number in A549 cell line did not undergo amplification where it commonly did in lung cancer in previous study. There are few possibilities behind this finding. Passage number of cell culture may alter how the cells behave after the passaging procedure. The cancer cells copy number may not amplify at passage 18 and has almost the same copy number with normal human DNA. Medium used for the cell culture also may exert effect on the mitosis of the cells that lead to reduce copy number of the cancer cell. The finding also suggest that MET role in the carcinogenesis in A549 is not significant. Further validation could enhance our understanding on the passage number and medium effects on cell lines growth and propagation in relation to carcinogenesis of lung cancer.

CHAPTER ONE

INTRODUCTION

1.1 Background of study

Cancer is a worldwide killer. It is a disease where cells undergo uncontrolled growth. Dysregulation of genomic activity leads to uncontrolled cell regulation and oncogenesis. One of the most cancer worldwide is lung cancer (Ravinder Singh & Kathiresan, 2014). It is uncontrolled growth of cells that reside in one or both of the lungs. Abnormal mass of tissue will be produced during the growth. The cells will turn to cancerous tissue and affect the normal function of lungs' tissues. Primary lung cancer indicates that the cancerous cell is originated in the lung while secondary lung cancer is cancer cells that spread to lungs after arising in other part of body such as breast. The most important risk factor is cigarette smoking. More than 80% of cases are associated to cigarette smoking (Ravinder Singh & Kathiresan, 2014). Other factors that contribute to lung cancer are radon gas exposure, air pollution and asbestos exposure.

Lung cancer has two main types; 1) non-small cell lung cancer (NSCLC) and 2) small cell lung cancer (SCLC). NSCLC is the most common type of lung cancer with high