UNIVERSITI TEKNOLOGI MARA

SYNTHESIS OF ZINC OXIDE NANOPARTICLES WITH BANANA PEELS EXTRACT (BPE) FROM MUSA ACUMINATA (PISANG ABU): EFFECT ON PRECURSOR CONCENTRATION AND REACTION TEMPERATURE

NURUL HAFIZAH BINTI ROSLI

Thesis submitted in fulfilment of the requirements for the degree of **Bachelor of Engineering (Hons) Chemical**

Faculty of Chemical Engineering

JULY 2019

ABSTRACT

Synthesis of metal oxide nanoparticles has been one of the most active research under nanoscience and nanobiotechnology especially when it is related to green technology. This green synthesis method is considered as alternative in synthesizing zinc oxide nanoparticles (ZnO NPs) which environmentally friendly among other synthesizing method which does not involve any toxic chemicals, possessed a strong adsorption ability and exhibits high catalytic efficiency. This research focusing on the studies on synthesizing of ZnO NPs by using Musa Acuminata (Pisang Abu) peels extract as a reducing agent. In the synthesizing procedure, zinc acetate dehydrate was used as precursor solution and sodium hydroxide to adjust the pH of the banana peels extract and zinc acetate dehydrate mixture. The concentration of the zinc acetate dehydrate and the reaction temperature of the procedure were varied from 0.01M - 0.2M and $50^{\circ}C$ – 90°C respectively. The synthesized ZnO NPs were characterized using Fourier Transform Infrared Spectroscopy (FTIR), UV-Visible Spectrometer (UV-Vis), Brunauer-Emmett-Teller (BET), Zeta-Potential, High-Performance Liquid Chromatography (HPLC) and X-Ray Diffraction (XRD). The band gap energy was found in the range of 3.28 – 3.45 eV meanwhile the XRD analysis confirmed the hexagonal wurtzite structure for the ZnO NPs with average particles of 14 to 17 nm. HPLC data showed an existence of ZnO NPs in the synthesized samples meanwhile BET analyzer confirming ZnO NPs particles sizes at range of 40 -110 nm. Lastly, Zeta-Potential result show the particles size for the samples exceeds the average nanoparticles size which is more than 100 nm. This confirms the banana peels used in the synthesized on ZnO NPs is suitable to be used as the reducing and capping agents.

ACKNOWLEDGEMENT

In the name of Allah, the Most Gracious and the Most Merciful

Alhamdulillah, all praises to Allah for the strengths and His blessing for the completion of this thesis. I thank God for all the opportunities and trial that have been showered on me to finish writing this thesis. I have been through so much experienced during this final year, not only by academic aspect but also from physical and mental aspect. My humblest gratitude to the holy Prophet Muhammad (Peace be upon him) which has been a guidance for me.

Firstly, I would like to thank my supervisor, Puan Rabiatul Adawiyah for her guidance, understanding, patience and always provide a positive encouragement and warm spirit for all of us. It has been a great pleasure and honour to have her as my supervisor. Constant support from her gave me strength to finish this thesis.

My deepest gratitude goes to my beloved family members. Without their support, I would never been this far in completing this thesis. They have been supporting me without stop. Thank you for the endless love, prayers and encouragement. I would like to thank my dearest father, Rosli Safar, my beloved mother my lovely grandparents which always give good advices to me, my one and only MA and my brothers.

A special gratitude and thank to all my research buddies; Belinda, Nik Amirah, Hawani and Rida for their motivation and helping hand during my studies.

Last but not least, I sincerely thank to my eternal best friends; Azmah, Najwa, Tasneem, Fathin, and close friends who always be there through thick and thin and always support me from behind. Without them, I would never be able to complete this thesis.

Nurul Hafizah Rosli, July 2019

TABLE OF CONTENT

	Page
AUTHOR'S DECLARATION	i
SUPERVISORS'S CERTIFICATION	ii
COORDINATOR'S CERTIFICATION	iii
ABSTRACT	iv
ACKNOWLEDGEMENT	v
TABLE OF CONTENTS	vi
LIST OF FIGURES	viii
LIST OF TABLES	X
CHAPTER 1: INTRODUCTION	1
1.1 Research Background	1
1.2 Problem Statement	2
1.3 Objectives of Research	3
1.4 Scope of Research	4
CHAPTER 2: LITERATURE REVIEW	5
2.1 Introduction to Nanotechnology	5
2.2 Synthesis of Nanoparticles	5
2.3 Green Synthesis of Zinc Oxide Nanoparticles	6
2.3.1 Synthesis using Plants, Agricultural Waste and Fruit Extract	7
CHAPTER 3: RESEARCH METHODOLOGY	27
3.1 Introduction	27
3.2 Material and Equipment	27
3.3 Overall Experiment Flow Chart	28
3.4 Experimental Procedure	29
3.4.1 Preparation of Banana Peels Extracts	29
3.4.2 Preparations of Zinc Acetate Dehydrate Solution	31

CHAPTER 1

INTRODUCTION

1.1 RESEARCH BACKGROUND

Nowadays, the synthesize of metal oxide nanoparticles has been one of the most active research under nanoscience and nanobiotechnology. The uses of the zinc oxide are widely used in the society where many industrial manufacturing processes including paints, cosmetics, pharmaceuticals, plastics, batteries and others. In the worldwide, 45% from the production of zinc oxide is used in the rubber industry to control the vulcanization process and as additive (Joel & Badhusha, 2016). In the pharmaceutical industries, ZnO is applied in ointments because of its antiseptic properties (Joel & Badhusha, 2016).

The use of plant extract in the study has been one of the attractions for the scientist to do further research of using of plant in the synthesis of metal oxide. The plants extract seems to be the best candidate and it is suitable for large scale of biosynthesis of nanoparticles. According to Ramesh, the uses of plant in the research are much more stable and the rate of synthesis is faster than that in the case of other organisms (P. Ramesh, 2014).

Furthermore, when it is involved with green synthesis method which more effective compared to other method. The synthesis of zinc oxide nanoparticles exhibits high catalytic efficiency, strong adsorption ability, high isoelectric point, biocompatibility and fast electron transfer kinetics for biosensing purposes (Muthu Chudarkodi R.R. & A., 2016)