UNIVERSITI TEKNOLOGI MARA

THE EFFECT OF COMBINING ELECTRON BEAM IRRADIATION AND IONIC LIQUID SOAKED (ILS) PRETREATMENT ON LIGNOCELLULOSIC OF OIL PALM FROND (OPF)

NURSYAKILA SUZIENA BINTI MAHMAD JAKI

THESIS submitted in fulfillment of the requirements for the degree of Chemical Engineering
(Bachelor Engineering (Hons) Chemical and Bioprocess)

Faculty of Chemical Engineering

July 2018

ABSTRACT

This research was conducted to study the effect of combining electron beam irradiation and ionic liquid soaked (ILS) pretreatment on lignocellulosic of Oil Palm Frond (OPF). OPF was used as potential lignocellulosic biomass (LCB) for the production of bioethanol. OPF was pretreated by using physical (electron beam irradiation) and chemical (ionic liquid) pretreatments. In this research project, LCB were soaked with 50% (v/v) of 1-ethyl-3-methylimidazolium acetate, [EMIM]Ac for ionic liquid pretreatment and then irradiated with different doses which was 100-1000 kGy using electron beam under cooperation with *Agensi Nuklear Malaysia*. The characterization of treated OPF was conducted by using Fourier Transform Infrared Spectroscopy (FTIR) and X-Ray Diffraction (XRD). The combination of ionic liquid soaked and electron beam irradiation on OPF was demonstrated to be more effective by the significant reduction of Lateral Order Index (LOI) (FTIR) and reduction of Crystallinity Index (CrI) (XRD). The value of LOI of ILS OPF decreased from 0.77 (untreated OPF) to 0.64 at 800 kGy doses of irradiation and CrI value of ILS OPF also decreased from 63.99% (untreated OPF) to 55.87% at 1000 kGy doses of irradiation.

ACKNOWLEDGEMENT

Alhamdulillah, all praises to Allah for the strengths and His blessing in completing this research. Highly appreciate my supervisor Madam Amizon Binti Azizan and co-supervisor, Nur Amira Aida Binti Jusri for their supervision, guidance and support. Their invaluable help of constructive comments and suggestions throughout the research have helped and contributed to the success of this research.

My appreciation is given to Fundamental Research Grant Scheme (FRGS) (600-RMI/FGRS 5/3 (12/2015)) for the financial support by Ministry of Higher Learning. Appreciation is also given to the Agensi Nuklear Malaysia, Bangi, Malaysia for the cooperation. Not forgotten to Faculty of Chemical Engineering, Universiti Teknologi MARA, Shah Alam for providing the facilities and assistance during research work. Special thanks to my colleagues and friends for helping me with this project.

	TABLE OF CONTENT	Page
	AUTHOR'S DECLARATION	i
	SUPERVISOR'S DECLARATION	ii
	COORDINATOR'S DECLARATION	iii
	ABSTRACT	iv
	ACKNOWLEDGEMENT	V
	TABLE OF CONTENT	vi
	LIST OF TABLES	viii
	LIST OF FIGURES	ix
	LIST OF ABBREVIATIONS	X
	CHAPTER ONE: INTRODUCTION	
1.1	Research Background	1
1.2	Problem Statement	4
1.3	Objective	5
1.4	Scope of research	5
	CHAPTER TWO: LITERATURE REVIEW	
2.1	Lignocellulosic biomass (LCB)	6
2.2	Oil Palm Frond (OPF)	11
2.3	Electron Beam Irradiation (EBI)	14
2.4	Ionic Liquid (IL) pretreatment	18
	CHAPTER THREE: RESEARCH METHODOLOGY	
3.1	Introduction	22
3.2	Overview of methodology	23
3.3	Preparation of Lignocellulosic biomass (LCB)	24
3.4	Preparation of 50% of 1-ethyl-3-methylimidazolium acetate [EMIM]Ac	24
3.5	Electron Beam Irradiation pretreatment	25
3.6	Ionic Liquid pretreatment	25
3.7	Fourier Transform Infrared Spectroscopy (FTIR)	26
3.8	X-Ray and Diffraction (XRD)	26
3.9	Equipment/Apparatus	27

CHAPTER ONE INTRODUCTION

1.1 Research Background

Currently, the fossil resources are not considered as sustainable and questionable from the economic, ecology and environmental point of views. The energy demand of fossil fuels are increasing, where more than 80% of the total global energy is obtained by burning fossil fuels, of which 58% alone is consumed by the transport sector (Escobar *et al.*, 2009). There are major challenges with these conventional fuels that are being faced by each country which is 1) increasing the consumption of all kinds of fossil fuels due to the growing industrialization and motorization of the world, 2) the contribution to greenhouse gas emissions and global warming and 3) oil supply disruption by the major oil producer countries.

The burning of fossil fuels is a big contributor to the increasing of the CO₂ level in the atmosphere which is directly associated with global warming observed in recent decades. The adverse effects of greenhouse gas (GHG) emissions on the environment, together with declining petroleum reverses, have been realized. Thus, the best initiative must be taken to replace the fossil resources to reduce the global warming. Therefore, there is renewed interest on the production and use of fuels from plants or organic waste (Naik *et al.*, 2010).

The biofuels produced from the renewable resources could help to minimize the fossil fuel burning and CO₂ production. Biofuels produced from biomass such as plants and organic waste could help to reduce both the world's dependence on oil and CO₂ production.

Plants use CO₂ to complete the photosynthesis and also for growth. Thus, plants are able to reduce the amount of CO₂ in the atmosphere and thus decrease global warming. Through consumption of biofuels, the CO₂ admissions can be offset since plants take up the CO₂ during the growth that is produced when the fuel is burned. In another word, lignocellulosic ethanol causes lower net greenhouse gas emission than first generation ethanol production, thereby reducing environmental pollution.