

UNIVERSITI TEKNOLOGI MARA

**FLUID STRUCTURE INTERACTION (FSI)
STUDY AT THE SMALL BORE CONNECTION
(SBC) DUE TO WATER HAMMER**

NUR AMALINA BINTI MUSTAFA

Thesis submitted in fulfillment
of the requirements for the degree of
Bachelor of Engineering (Hons) Oil and Gas

Faculty of Chemical Engineering

July 2018

ABSTRACT

Water hammer is one of the serious problem that commonly occur in the piping system. Occurrence of this problem can cause physical damage to the pipe and in worst condition, leak will happen and cause burst. The main critical area in this problem is small bore connection which can give negative impact to the structural of pipe. According to definition of water hammer, this problem normally happen due to sudden changes in fluid velocity caused by sudden closure or opening of pump and valve or electrical failure. In this study, an analysis by using ANSYS Workbench had been done at mainline pipe that have various diameter size of small bore connection. Diameter of small bore connection are varied from 1 inch (25.4 mm) to 2 inch (50.8 mm). The purpose of this study is to find maximum pressure distribution in the pipe. Result shows that highest maximum pressure distribution inside the pipe occurred when diameter of small bore connection is the smallest for both simulations using different pressure and velocities. Pressure at the point 318 mm from the inlet shows the highest pressure compared to other point. In addition, the study investigated the effect of water hammer on small bore piping by utilizing Finite Element Analysis (FEA). Through this study, the effect that occur on the structure of small bore piping can be expected on certain pressure data. From the result analysis that obtained, it found that the maximum pressure distribution occurred at inlet pressure 4826330 Pa and at inlet velocity 12 m/s at the flange termination. Maximum deformation also occurs at 1 inch small bore connection with these pressure and velocity.

ACKNOWLEDGEMENT

First of all, thank to Allah SWT for giving me this opportunity to complete my study on Fluid Structure Interaction (FSI) Study at the Small Bore Connection (SBC) due to water hammer. Next, I would like to thank my supervisor Prof Madya Ir. Dr. Nadiahnor Md Yusop for giving me useful guidance in completing this study. I am really thankful for her patient in teaching me new knowledge and giving advice related to the study.

Special appreciation to Universiti Teknologi MARA, UiTM for giving me great facilities in order to complete this study. Thanks to the technicians in UiTM for helping me in getting the software required for this study.

Then, I would like to express greatest appreciation to my parent, Mr. Mustafa Bin Baik and [REDACTED] for supporting me mentally and physically in completing this study. They also always give great motivation during completing this study.

Last but not least, I would like to thank all my friends who are always supporting me in completing this study. Thank you so much. I also would like to thank all the people that helped me in this study directly or indirectly.

TABLE OF CONTENTS

AUTHOR'S DECLARATION	ii
SUPERVISOR'S CERTIFICATION.....	iii
ABSTRACT	iv
ACKNOWLEDGEMENT.....	v
LIST OF TABLE	x
LIST OF FIGURES	xii
LIST OF SYMBOLS	xvii
LIST OF ABBREVIATIONS	xviii
CHAPTER ONE: INTRODUCTION	1
1.1 Background of Studies	1
1.2 Problem Statement	3
1.3 Objective of Studies.....	4
1.4 Scope of Studies.....	4
1.5 Research Outline	5
CHAPTER TWO: LITERATURE REVIEW	6
2.1 Introduction	6
2.2 Definition of Water Hammer	6
2.3 General Equation of Water Hammer.....	7
2.4 Types of Water Hammer	8
2.5 How Water Hammer Happen	10
2.6 Type of Coupling	11
2.6.1 Poisson Coupling.....	11

CHAPTER ONE

INTRODUCTION

1.1 Background of Studies

Water hammer is a pressure transient phenomenon which occurred due to sudden changes of velocity in the pipe (Lahane, Patil, Mahajan, & Palve, 2015). Water hammer also have varieties of name such as surge pressure and fluid hammer. Term “water hammer” also used to describe the situation that occur in a closed area which involving acceleration or retardation of the flow (KSB Know-how, Volume 1, Water Hammer, 2010). This term also described as generation, propagation and reflection of pressure waves along pipeline of pressurized liquid system that related with changes in flow condition (Bulatović & Bergant, 2014). In addition, water hammer phrases also known as pressure surge or wave that happen when fluid usually in liquid condition that flow in motion is forced to stop or change direction suddenly (Chen, Ren, Xu, & Loxton, 2015). In simple definition, water hammer is a phenomenon that happen when there are sudden changes in the flow of fluid inside pipe.

Water hammer is known as one of the major problem that industry does not take seriously. This condition can be occur in any piping system if the design does not be considered properly and follow the standard and regulation. Besides that, water hammer can also happen in many condition such as sudden valve closure or opening, sudden pump closure or opening and sudden shut off in the piping system due to electrical shortage and other related problem (Mansuri, Salmasi, & Oghati, 2014). Sometimes, water hammer can also occurred due to small leakage that happened on the pipe (Ali, Mohamed, & El-darder, 2010). Uncontrolled water hammer problem can interrupt the operation on that area and water hammer can damage and destroy system component if worst case happen (Karadžić, Bulatović, & Bergant, 2014). Water hammer can also cause physical damage on the pipe, erosion and bending of the pipe. Every effect of the water hammer will be varied depends on the material of the pipe and other parameter such as velocity, type of fluid, density, pressure and viscosity of fluid. The effect can also varied depends on the presence of support underneath of the pipe. Therefore, the