EFFECT OF VARIOUS TUNING METHODS TOWARD THE CONTROLLABILITY OF TEMPERATURE CONTROLLER

SYAFIQ IZZUDDIN BIN SAPRI

This report is submitted in partial fulfilment of the requirements needed for the award of Bachelor in Chemical Engineering (Hons)

FACULTY OF CHEMICAL ENGINEERING

UNIVERSITI TEKNOLOGI MARA

SHAH ALAM

2017

ACKNOWLEDGEMENT

In the name of Allah S.W.T and with the help of Allah. All good aspiration's devotion, good expression and prayers are due to Allah whose blessing and guidance have helped me through this entire project.

I would like to convey my highest appreciation to my supervisor Encik Abdul Aziz bin Ishak for his guidance and support which leads to the completion of the project. Further appreciation is also conveyed to Encik Mohd Nazri bin Md.Aris, Lab assistant Process Control Laboratory of Chemical Engineering for his help and patience.

Lastly, special thanks to my family who inspired and encouraged me during my study in UiTM. They had given me a lot of moral support whatever conditions towards the completion of this project.

Thank You.

ABSTRACT

The ability of Proportional Integral Derivative (PID) controllers to compensate many industrial processes has led to their wide acceptance in industrial application. In this project, a comparison is made for different tuning methods of PID controller to improve the performance of the temperature control. The tuning method that involved in this experiment were Zeigler-Nichols, Cohen-Coon, Chien, Hrones, and Reswick, CHR (1), CHR (2), CHR (3) and CHR (4). To investigate the performance of the tuning, the process at first going through the open loop test. The objective of open loop test is to figure out the value of response rate (RR), dead time (T_d) and time constants (T_c). Then the value of RR, T_d, and T_c is used to calculate the optimum controller setting for every tuning method. The value of PID is used in the load disturbance test to observe the performance every tuning method. Based on the response produced for each tuning method, the most effective tuning method is CHR (1). The method has the highest settling time and rise time which means the response able achieve the set point faster than other tuning method. The rise time and settling time produced from the response is 0.833 minute and 3.333 minute respectively

TABLE OF CONTENTS

DECLARATION	ii
DEDICATION	iii
SUPERVISOR'S CERTIFICATION	iv
ACKNOWLEDGEMENT	V
ABSTRACT	vii
LIST OF FIGURES	xi
LIST OF TABLES	xii
LIST OF ABBREVIATIONS	xiii
CHAPTER 1 INTRODUCTION	
1.1 Introduction	1
1.2 Problem Statement	2
1.3 Objective	2
CHAPTER 2 LITERATURE REVIEWS	
2.1 Process Control	3
2.2 Control System	4
2.2.1 Block Diagram	4
2.2.2 Basic Element of Process Control	4
2.3 Feedback Control	5
2.4 Basic Control Modes	6
2.4.1 Proportional Control	6
2.4.2 Integral Control	8
2.4.3 Derivative Control	9
2.5 Proportional Integral Derivative (PID) Controller	9
2.6 Application of Temperature Control in Unit Operation	11

CHAPTER 1

INTRODUCTION

1.1 Introduction

Process control is the crucial element in many manufacturing plants. Control in process industries which refers to the regulation or method that used to control processes variables such as temperature, flow, pressure and level. The process can be monitored and manage by measuring the deviation of an existing value from the desired value and after that consequently adjusting the system to reduce the differences (Krishnaswamy, 2011). A good controlling system can help the manufacturing plants reduce its variability in the product by maximizing the quality of the product and increase the efficiency of the system.

Proportional, Integral and Derivative (PID) controllers have been the most important discourse in engineering practice and have a long history in the automatic control field, starting from the beginning of the last century (O'Dwyer, 2006). It is the most widely-used controller in the chemical process industries. Prior it was initially actualized in the pneumatic device but now its uses are extended to analog as well as digital electronics (Priyadarshini and Lather, 2013). PID controller is the most flexible and simple method. The ability of Proportional Integral Derivative (PID) controllers to remunerate many practical industrial processes has prompted to their wide acknowledgment in industrial application.