NANOPARTICLE SYNTHESIS FROM PINEAPPLE WASTE USING COPPER (II) SULPHATE PENTAHYDRATE

NADIA BT ABDUL LATIP

This report is submitted in partial fulfilment of the requirements needed for the award of Bachelor in Chemical and Process Engineering (Hons)

FACULTY OF CHEMICAL ENGINEERING UNIVERSITI TEKNOLOGI MARA SHAH ALAM

JULY 2017

ACKNOWLEDGEMENT

First of all, I would like to thank Allah for giving me the opportunity for completing this Research Project 2 successfully. My gratitude and thanks to my supervisor, Madam Syafiza Abd Hashib. Thank you for the support, patience and ideas in assisting me with this project. Also, thank you to LESTARI Grant (600-IRMI/MYRA 5/3 LESTARI (0143/2016) from Universiti Teknologi MARA for supporting this research. Special thanks to my colleagues and friends for helping me with this project and to all who may contribute directly or indirectly towards making this research successful.

ABSTRACT

Nanoparticles have been widely used especially metallic type as they have many potential applications that can be applied. Copper-based nanoparticles have been chosen to be synthesized by green synthesis method. Basically, green synthesis was a method that used plant extract as a reducing agent. The plant extract contain reducing properties mostly in their fruit and leaf. This green synthesizing method is easy, efficient and eco-friendly compared to chemical-mediated or microbe-mediated synthesis. Copper is highly conductive metal and less expensive compare to silver and gold also, they have excellent physical and chemical properties and also low cost of preparation. In this research project, different volume of ratio of CuSO₄.5H₂O and pineapple extract; 1:2, 1:3, 1:4 and temperature at room to 80°C were used to synthesize copper nanoparticles. The result from UV-Vis shows that the broad peak was obtained mostly around 341 to 343 nm. Plus, large amount of aqueous pineapple and high range of temperature were required to make the reduction of Cu²⁺ effectively. FTIR result shows that the stretching frequency region contains phenols and alcohol, alkyne and amide. These copper nanoparticles were in shape of spherical through observation from FESEM. Plus, the size of sample with ratio (CuSO₄.5H₂O: pineapple extract) 1:2 was within the range of 40-70 nm while for ratio 1:4 the size was in between 30-50 nm.

TABLE OF CONTENTS

		PAGE			
PLAGIARISM FOR	RM	ii			
DECLARATION SUPERVISOR'S CERTIFICATION		iii iv			
				CERTIFICATION	v
ACKNOWLEDGEMENT ABSTRACT TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF ABBREVIATIONS LIST OF SYMBOLS		vi vii viii x xi xi			
			xiii		
			CHAPTER 1	INTRODUCTION	
				1.1 Research Background	1
				1.2 Problem Statement	5
				1.3 Objectives of Research	5
			1.4 Scope of Research	6	
CHAPTER 2	LITERATURE REVIEW				
	2.1 Introduction of Nanoparticles	5			
	2.2 Synthesis Method of Nanoparticles	7			
	2.2.1 Chemical Methods	8			
	2.2.2 Physical Methods	10			
	2.2.3 Biosynthesis Method	11			
	2.3 Factors Affecting Biological Synthesis of	12			
	Nanoparticles via Plant Extract	12			
	2.3.1 Effect of Reaction Temperature	12			
	2.3.2 Effect of Reaction pH	13			
	2.3.3 Effect of Reactant Concantration	14			
	2.4 Selected Method of Synthesis	15			
	2.5 Analysis Method for Nanoparticles	16			
	Characterization				
	2.5.1 UV- Visible Absorption	16			
	Spectroscopy				
	2.5.2 X-ray Diffraction Analysis (XRD)	16			
	2.5.3 Fourier Transform Infrared	17			
	Spectroscopy (FTIR)				
	2.5.4 Tranmission Electron Microscopy	17			
	(TEM)				
	2.5.5 Scanning Electron Microscope	18			
	(SEM)				
	2.5.6 Atomic Force Microscopy (AFM)	18			
	2.5.7 Field Emission Scanning Electron	18			
	Microscope (FESEM)				
	2.6 Biological Synthesis Copper	19			

CHAPTER 1

INTRODUCTION

1.1 Background of Research

Nanotechnology is an emerging field. Nanotechnology has been chosen and evolved widely because of its big potential for well over a decade. In nanotechnology, nanoparticles that measure 100 nanometers or less in size are used. They were effectively a bridge between bulk materials and atomic or molecular structures.

Nanoparticles were known for their small size of particles. They have large surface area and this dominated the contributions made by the small bulk of the materials. The properties of nanoparticles change as their size approached the nanoscales and as the percentage of atoms at the surface of a material becomes significant. These particles have special and enhanced physical and chemical properties as compared to their bulk materials due to their large reactive and exposed surface area and quantum size effect as a result of specific electronic structures (Khan et.al, 2014). Nanoparticles also have ability to form suspensions.

Other properties of nanoparticles are quantum confinement in semiconductor particles, surface plasmon resonance in some metal particles and superparamagnetism in magnetic materials. Nanoparticles also can possess the property of diffusion especially at higher temperature and not affect the density final