

UNIVERSITI TEKNOLOGI MARA

**PREDICTION OF CO₂ ABSORPTION
CAPACITY OF MEA ABSORPTION
SYSTEM IN THE PRESENCE OF HSS**

**MUHAMMAD SYIMIR ASYRAF BIN MOHD
SHAARI**

Thesis submitted in fulfillment
of the requirements for the degree of
Bachelor of Engineering (Hons.) Oil & Gas

Faculty of Chemical Engineering

JANUARY 2019

ABSTRACT

Heat Stable Salt (HSS) accumulation has a detrimental impact on amine system operations as it can reduce the effective capacity of the amine solution, contribute to corrosion and aggravate operational problems such as foaming, amine loss, and fouling. It was reported in a refinery; operational problems arise only when the HSS accumulate at high concentration especially at the absorber column. The main aim of this research is to study the effect on CO₂ loading in the rich amine coming out from the absorber. This is done with the presence of sulfate, acetate, and formate at different temperatures, pressures and HSS concentrations. MEA is chosen as the lean amine because it is the most common amine used in the industry. It is observed that the presence of HSS lowers the CO₂ absorption performance. Temperature and HSS concentration have significant effect on the CO₂ loading in the rich amine stream while there are almost no changes when pressure changes. By forecasting the parameter that affect the HSS in the absorber, mitigation measures can be taken at early stage to prevent these unwanted problems and reduce downtime for the HSS removal treatment.

ACKNOWLEDGEMENT

Firstly, I wish to thank God for giving me the opportunity to embark on my degree and for completing this long and challenging journey successfully. My gratitude and thanks go to my supervisor Dr. Putri Nadzrul Faizura

My appreciation goes to the housemate of the platinum who provided the facilities and assistance during simulation. Special thanks to my colleagues and friends for helping me with this project.

Finally, this thesis is dedicated to my very dear father and mother for the vision and determination to educate me. This piece of victory is dedicated to both of you. Alhamdulilah.

TABLE OF CONTENT

	Page
AUTHOR'S DECLARATION	i2
SUPERVISOR'S DECLARATION	ii
ABSTRACT	iv
ACKNOWLEDGEMENT	v
TABLE OF CONTENT	vi
LIST OF TABLES	viii
LIST OF FIGURES	ix
LIST OF ABBREVIATIONS	x
LIST OF NOMENCLATURE	xi
CHAPTER ONE: INTRODUCTION	1
1.1 Overview of Natural Gas	1
1.2 Problem Statement	2
1.3 Objective of Study	3
1.4 Scope of Study	4
CHAPTER TWO : LITERATURE REVIEW	5
2.1 Acid Gas Removal	5
2.1.1 Acid Gas Removal Process	8
2.2 Solvent Absorption	9
2.2.1 Amine Solvent	10
2.2.2 Monoethanolamine (MEA)	11
2.2.3 Diethanolamine (DEA)	13
2.2.4 Methyldiethanolamine (MDEA)	14
2.3 HEAT STABLE SALTS	15
2.3.1 Removing HSS	17
CHAPTER THREE : METHODOLOGY	18
3.1 Introduction	18
3.2 Flow sheet and Design Data for Simulation Process	19
3.3 Fluid package for AGRU Simulation Process	21

CHAPTER ONE

INTRODUCTION

1.1 OVERVIEW OF NATURAL GAS

Natural gas is one of the most important non-renewable resource that fuels a country daily activity. The demand for natural gas has increase radically due to its combustible characteristic for domestic and industrial purposes. Malaysia is blessed with large gas reserves which hold for the 14th largest gas reserves in the world (Candiah, 2005). According to Malaysian Gas Association (2016), Malaysia's total natural gas resources are estimated to be 100.7Tscf that would last up to 40 years. Malaysia is highly dependent on natural gas as its main source of energy. Natural gas typically comprises of methane, ethane, carbon dioxide (CO₂), hydrogen sulphide (H₂S), nitrogen, and water (H₂O). Natural gas is referred as sour gas when the sulphur content is high.

Natural gas needs to be treated for contaminants before it can be used for various task. H₂S and CO₂ in natural gas are identified as contaminants that cause problems such as corrosion, erosion, health and environmental hazard. It is compulsory for all company to clean the natural gas. Not only mechanical problem but H₂S is very dangerous to living organism as it can lead to death at high concentration. While CO₂ may disrupt the later gas processing, it can be used back for enhanced oil recovery (EOR). These contaminants can also poison the catalysts in the other processes. Furthermore, the natural gas would be more suitable and more uses after the gas sweetening process is done.

Natural gas usages are endless in this rising era such as fuel for vehicle, petrochemical plants, and even households use. To meet the high demand of clean natural gas, the acid gas removal units (AGRU) becomes compulsory to the oil and gas industry. AGRU as the name implied, works to remove these contaminants from the natural gas. By removing these contaminants, unwanted situation can be prevented in the further processing of natural gas. There are many type of acid gas removal processes