UNIVERSITI TEKNOLOGI MARA

OPTIMIZATION OF AUTONOMOUS INFLOW CONTROL DEVICE PERFORMANCE THROUGH EVALUATION STUDY ON PRESSURE DISTRIBUTION ON LEVITATING DISC

MUHAMMAD AIMAN BIN BAHARIN

Thesis submitted in fulfilment of the requirement for the degree of Bachelor Eng. (Hons) Oil & Gas

Faculty of Chemical Engineering

July 2018

ABSTRACT

Oil and gas industry is facing critical challenge in maintaining production performance. High water production due to strong aquifer and water injection decrease the performance of a well. Implementation of Autonomous Inflow Control Device inside a completion system shall help improve the total performance of a well. The device work autonomously where a levitating disc control the inflow based on the composition and velocity of the fluid produced. Each field require specific design of the device to be implemented. The purpose of this paper is to determine the optimum flow area for the device to work effectively in a well condition specified. This will verify the effects of a few design parameter of the device focused such as inlet area, disc size and outlet size. Simulations using ANSYS Fluent were done by adjusting the design parameters to obtain favourable results. The results were analysed based on the differential pressure exerted on the disc. These optimum parameters shall indicate that the levitating disc will work effectively and autonomously inside the completion string during production. It will also verify that the design parameters are critical to ensure that the production performance was enhanced.

ACKNOWLEDGEMENT

The highest praise and thanks to Allah for giving me the opportunity to embark on Bachelor Degree and for completing this long and challenging journey successfully. My gratitude and thanks go to my supervisor PM. Ir. Dr.Nadiahnor Md Yusof. I will forever thank you for your support, patience and ideas in assisting me with this project. I also would like to thank all the lecturers and students of EH243 for all the knowledge and wisdoms for the past 4 years.

Finally, this thesis is dedicated to both of my parents that had supported me with the vision and determination to educate me.

TABLE OF CONTENTS

		Page
AUTHOR'S DECLARATION		i
PLAGIARISM FORM		ii
SUPERVISOR'S CERTIFICATION		iii
ABSTRACT		iv
ACKNOWLEDGEMENT		v
TABLE OF CONTENTS		vi
LIST OF TABLES		1
LIST OF FIGURES		2
CHAPTER ONE: INTRODUCTION		3
1.1 RESEARCH BACKGROUND		3
1.2 PROBLEM STATEMENT	5	
1.3 OBJECTIVE	6	
1.4 METHODOLOGY		7
CHAPTER TWO: LITERATURE REVIEW		9
2.1 INDUSTRIAL CONCERN		9
2.2 IMPLEMENTATION OF INFLOW CONTROL DEVICE		10
2.3 DEVICE EFFECTIVENESS		11
2.4 WORKING MECHANISM		12
2.5 PREVIOUS STUDIES		16
2.6 COMPUTATIONAL FLUID DYNAMIC		21
CHAPTER THREE: COMPUTATIONAL MODELLING AND		24
SIMULATION		
3.1 BASIS OF SIMULATION		24
3.2 INLET SIZE MODIFICATION		27
3.3 DISC SIZE MODIFICATION		27
3.4 OUTLET SIZE MODIFICATION		28

CHAPTER ONE

INTRODUCTION

1.1 RESEARCH BACKGROUND

For the last two decades, water production has become a severe and complicated issue in oil and gas industry[1]. People in the industry around the globe have been trying to anticipate this problem to optimize their production with the best of their abilities which has always been the most critical challenges in the field. Typically, inside oil formation underground, presents of water cannot be avoided which in certain situation acts as an important element in producing the oil[2]. This water can provide necessary drive for the hydrocarbon to be extracted and contribute to maintaining the reservoir pressure. An underground formation of water-bearing permeable rock, unconsolidated materials such as gravel, sand, silt of rock fractures which water can easily move is called aquifer[3]. In some cases, water injection is also applied to the formation to fulfil the needs of water drive to push the oil out of the formation to the producing well and maintaining the reservoir pressure so that gas that usually contain inside the extracted fluid would not break out of the solution. This is critical in optimizing production and minimizing production problem.

However, during production, the water is inevitably produced due to the encroachment of water from the aquifer or the injected water. Sometimes the volume of produced water is higher than the oil. At some point in the producing life of a well, this ratio of oil to water became too small and reaches its economical limits. When this happens, the well needs to be shut off. In a field where this high water production problem was not addressed efficiently from the beginning of the well's early production life, there is still high quantity of oil trapped inside the formation when the wells are shut