

UNIVERSITI TEKNOLOGI MARA

**MODELLING OF AVERAGE PORE
DIAMETER AND POROSITY OF
POROUS PCL/HA COMPOSITE BY
USING ANOVA ANALYSIS**

SOFEA HANOM BINTI NORDIN

Thesis submitted in fulfilment
of the requirements for the degree of
Bachelor Eng. (Hons) (Chemical)

Faculty of Chemical Engineering

January 2020

ABSTRACT

Porous polycaprolactone/hydroxyapatite (PCL/HA) composite is said to be the most stable biodegradable scaffold for bone tissue regeneration. Hence, has initiated the researchers to study the reliability of that statement. The objective of this study is to develop mathematical relationship between the average pore diameter and porosity of porous PCL/HA composite and investigate the correlation between temperature and pressure of foaming process with the presence of HA content. The composite was prepared through solid state foaming process of supercritical carbon dioxide (ScCO_2). In this study, temperatures and pressures of foaming process were varies from 40°C to 45°C and 10MPa, 20MPa and 30MPa, respectively. In addition, HA content also were varied at 10, 20, 30 and 40 wt%, respectively. The analysis of variance (ANOVA) was done by using Microsoft Excel. The develop model shows that average pore diameter is increased with temperature but will reduced as the interaction between pressure and HA content increased. Meanwhile, develop model for porosity shows that temperature is a sole effect in increasing the porosity value. The develop model also indicated that the designated model for porosity have a high value of coefficient of determination (R^2) with 0.97 which means that it is highly fitted, while the develop model for average pore diameter is consistent with the theory which is towards the temperature and interactions between pressure and HA content. However, the fitness of the model is only 0.74 due to one data that is deviated far from the others. Therefore, validation with different values is recommended for future research.

ACKNOWLEDGEMENT

In the name of Allah, the Most Gracious and the Most Merciful

Alhamdulillah, all praises to Allah for the strengths and His blessing in completing this final year project successfully. Without His blessing I might not have the strength to complete this project within the time given.

Next, special appreciation goes to my supervisor, Madam Suffiyana binti Akhbar for showing me guidance and support all the time. It is impossible for me to complete this project smoothly without the proper guidance from her.

Last but not least, I want to convey my deepest gratitude to my beloved parents and family for their support in term of prayers and encouragement. Knowing that they always support me from the back give me the urge to do my best in every single thing I do.

TABLE OF CONTENT

ABSTRACT.....	v
ACKNOWLEDGEMENT	vii
TABLE OF CONTENT.....	viii
LIST OF TABLES.....	x
LIST OF FIGURES	xi
LIST OF SYMBOLS	xii
LIST OF ABBREVIATIONS.....	xiii
CHAPTER ONE	1
INTRODUCTION	1
1.1 Research Background and Motivation.....	1
1.2 Problem Statement.....	4
1.3 Objectives	5
1.4 Significance of Study.....	5
1.5 Scope and Limitation	5
CHAPTER TWO	6
LITERATURE REVIEW	6
2.1 Bone Tissue Engineering (BTE).....	6
2.1.1 Description.....	6
2.2 Bone Scaffolds	7
2.2.1 Descriptions	7
2.2.2 Types of Bone Scaffolds.....	7
2.2.3 Porous PCL/HA Composite.....	9
2.3 Dependency of Foaming Conditions towards the Average Pore Diameter and Porosity of the Porous PCL/HA Composite.....	10
2.4 Software Use	13
2.4.1 Microsoft Excel.....	13

CHAPTER ONE

INTRODUCTION

1.1 Research Background and Motivation

Tissue engineering (TE) is defined as an interdisciplinary field that uses the principles of engineering and life sciences towards the development of tissues` organ, which can regenerate, maintain, or improve the current tissue organ. For tissue engineering that applied to bone generation by tissue-engineered implant is called as bone tissue engineering (BTE) (Chen, Z., 2017). The main purpose of developing BTE is to protect the internal organ and to increase the regeneration rate of bone tissue as well as act as temporary tissue to replace the damaged tissue. Tissue implantation is usually applied to an area with a large damage tissue due to an accident that is almost impossible to recover.

In recent study, the researchers have further expanded the scope or the study of BTE by developing a new tissue regeneration aid called biodegradable scaffolds. Scaffolds are 3D engineering materials that can stimulate desirable attachment and proliferation to contribute to the formation of new functional tissues. It is used to replace the old methods for osteoporosis problem such as autograft, allograft and bone graft substitutes. The factors that need to be considered in designing the bone scaffolds are (Ghassemi et al., 2018):

- 1) The compatibility of cell attachment and proliferation.
- 2) The materials used are not toxic will not cause inflammatory reactions.
- 3) Biodegradability of scaffolds material to make sure that it is safe to be used.
- 4) Mechanical properties to bear weight during amelioration period.
- 5) Proper structure for porosity (80 - 95%) and pore diameter (215-402.5 μ m) for cell penetration, nutrients, waste transfer, and angiogenesis.
- 6) Sterility without losing of bioactivity.
- 7) Ability to transfer drug or molecules inside the tissue.