UNIVERSITI TEKNOLOGI MARA

REMOVAL OF HEAVY METAL MIXTURES FROM WASTEWATER OF ELECTROPLATING INDUSTRY

MUHAMMAD AMARUL ALIFF BIN MAHADI

Bachelor of Engineering (Hons.) Chemical

July 2019

ABSTRACT

Wastewater from electroplating industries caused major hindrance to inland water pollution due to the presence of heavy metals. Current method administered to remove heavy metals content from the solution was hydroxide precipitation with aid of coagulation-flocculation process. This method chosen due to simplicity of treatment process and low operational cost. The present investigations only deal with removal of single metal because of simple treatment control and easily to achieve high removal. Therefore, this investigation only cope to remove multi-metals (Copper, cadmium, zinc) from synthetic wastewater which prepared according to the real wastewater from electroplating industries. Jar test was conducted on two different parameters which were initial pH of wastewater and coagulant dose. Results obtained from this study shows that highest removal (Cu = 99.99%, Cd = 99.73%, Zn = 99.89%) at pH 10 with coagulant dosage of 140 mg/L. The industrial treatment method was performed to compare the optimum condition between both methods. The result shows the optimum condition for removal was at pH 12 with dosage of FeCl₃ at 970 mg/L (Cu = 99.97%, Cd = 99.98%, Zn = 99.87%). The selected data obtained was fitted using multilinear regression via Excel Software. The regression analysis shows adjusted R2 obtained indicates best fitting of data. The ANOVA analysis proved that the mathematical expression can be used to predict removal of multi-metals from an aqueous solution.

ACKNOWLEDGEMENT

Firstly, I wish to thank God for giving me the opportunity to embark on my degree and for completing this long and challenging journey successfully. My gratitude and thanks go to my supervisor Assoc. Prof. Dr. Kamariah Noor Ismail and collaborator Dr. Siti Wahidah binti Puasa

My appreciation goes to the UiTM Laboratory staff for providing such great facilities for me to conduct the experiment. Special thanks to my colleagues and friends for helping me with this project.

Finally, this thesis is dedicated to the both of my father and mother for the vision and determination to educate me. This piece of victory is dedicated to both of you. Alhamdulilah.

TABLE OF CONTENT

			Page
CONFIRMATION BY PANEL OF EXAMINERS			1
AUTHOR'S DECLARATION			2
ABSTRACT			3
ACI	KNOWL	4 5	
TAE	BLE OF		
LIST OF TABLES			8
LIS	r of fi	GURES	9
СНА	APTER (ONE INTRODUCTION	10
1.1	Resea	urch Background	10
1.2	Proble	em Statement	12
1.3	Objec	etives	13
1.4	Scope	e and Limitations of Study	13
СНА	APTER '	TWO LITERATURE REVIEW	15
2.1	Introd	luction to Wastewater	15
2.2	Heavy Metals Contamination		16
	2.2.1	Cadmium	17
	2.2.2	Nickel	18
	2.2.3	Copper	18
	2.2.4	Chromium	19
	2.2.5	Zinc	20
	2.2.6	Lead	20
2.3	Methods for Heavy Metals Removal		21
	2.3.1	Membrane Filtration	21
	2.3.2	Activation Carbon Activation	22
	2.3.3	Ion Exchange	23
	2.3.4	Chemical Precipitation	25
	2.3.5	Coagulation-Flocculation Process	28

CHAPTER ONE INTRODUCTION

1.1 Research Background

Water contamination and inadequate sources of water are becoming major environmental adversity which is caused by the demolition of natural inland water. This signifies in the decrement of advancement of socioeconomic position as well as individual and environmental sustain perspective (Carolin, Kumar, Saravanan, Joshiba, & Naushad, 2017). With the fast emergence of industries, for instance, metal coating manufacturing, manure production industries, paper industries, and others have indicated a variety of toxic substances released to the environment that can cause severe complication (Fu & Wang, 2011). Carolin *et al.*, (2017) reported that there are several categories of pollutants that are toxically generated in the industrial effluent including organic and inorganic pollutant which differ in the range of toxic level. Heavy metal is one of the toxicants released from developing industrial sectors.

Heavy metal species such as chromium (Cr), nickel (Ni) and zinc (Zn) normally discharged in wastewater that came from automobile coating industries (Xiong, Cao, Yang, Lai, & Yang, 2017). In manufacturing of mirror, silver (Ag) is used as a coating material and subsequent residual majorly discharged in drained spray solution which later causes emission (Folens, Huysman, Van Hulle, & Du Laing, 2017). Zhao, Chen, Shen, Kang, Qu, Wang, 2017 stated that cadmium (Cd) commonly found in battery processing industries, stabilizers, and alloy industries. Meanwhile, Cr usually generated from latter industries, tanning and electroplating industries (Carolin *et al.*, 2017, Zhao *et al.*, 2017). Mercury (Hg) currently used as additional material in pulp and paper industries and also pharmaceutical industries (Ahmad, Wong, Teng, & Zuhairi, 2007). All the heavy metals listed can cause pollution which resulting in illness if they are consumed even at low concentration, and each of them gave significant effects to the healthiness of individual and cleanliness of the environment.

Due to the existence of resistance properties of the heavy metals (Carolin *et al.*, 2017), various studies suggested alternative solutions required for the removal of heavy metals. Many research conducted to evaluate an advisable option to eliminate the heavy metals from