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IN-SILICO WORKS ON CONTROL OF 

BLOOD GLUCOSE LEVEL FOR TYPE 1 

DIABETES (T1D) USING IMPROVED 

HOVORKA EQUATIONS AND 

ENHANCED MODEL PREDICTIVE 

CONTROL (eMPC) 

 

Abstract 

Artificial pancreas technology has been 

continuously developed over the past few years. However, 

there are still flaws found in recent technology in relation to 

injection of insulin subcutaneously into type 1 diabetes 

patient. The injection of insulin into the patient boy must be 

specific, exact and precise to ensure that the blood glucose 

level is between the normoglycemic ranges, 4.5 mmol/L to 

6.0 mmol/L. If the blood glucose level (BGL) were below 

or over normoglycemic range, patients will experience 

effects caused by hyperglycemia or hypoglycemia. 

Therefore, the research seeks to find optimum insulin 

infusion rate into the patient for the blood glucose level to 

be at safe glycemic range. The research on development of 

artificial pancreas is mainly focusing on the algorithm that 

will be programmed into controller system. This research 

will use enhanced Model Predictive Controller (eMPC) and 

improved Hovorka equations for in-silico works for 

controlling blood glucose level for Type 1 Diabetes (T1D). 

The simulation will be run on MATLAB software. Only 

meal disturbance factor is include and varies in CHO intake 

during breakfast, lunch and dinner. Reference data to be 

substituted into related parameter value in the equation for 

meal disturbance are taken from real life patient data. The 

simulation was successfully carried out and the result was 

observed, evaluated and discussed.  

I. Introduction 

 Types of diabetes are Type 1 Diabetes (T1D), 

Type 2 Diabetes (T2D) and gestational diabetes. The 

research focus on controlling blood glucose between 

normoglycemic range (4.5 mmol/L to 6.0 mmol/L) for 

Type 1 Diabetes Patient (T1D). T1D is a chronic type 

disease that causes the body to not produce insulin 

hormone or enough insulin hormones to be able in 

converting blood glucose into energy at optimum level. 

T1D patients have to depend on intravenous insulin 

injection multiple times daily in order to bring down their 

blood glucose level. A correct dosage has to be determined 

to prevent occurrence of hypoglycemia (blood glucose 

level below 2.4 mmol/L) and hyperglycemia (blood glucose 

level exceeds 6.0 mmol/L).  

 Both conditions are unfavorable for the patient. 

Hypoglycemia can be diagnosed through symptoms such as 

sweating, rapid pulse and blurred vision. Severe 

hypoglycemia could lead to death if not treated right away 

with insulin injection. Symptoms of hyperglycemia can be 
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seen when the patient is experiencing increased thirst, 

headaches and frequent peeing. Developing an Artificial 

Pancreas (AP) will help in automating subcutaneous insulin 

infusion task to prevent both episodes of hyperglycemia 

and hypoglycemia in a closed loop system. AP consists of 

continuous subcutaneous insulin infusion (CSII) pump, 

continuous glucose monitoring (CGM) sensor, CGM 

receiver and the control algorithm which is what this 

research is currently developing. The control algorithm 

should be able to measure and predict the accurate flow rate 

and amount of insulin infusion to regulate blood glucose 

level (BGL) within normoglycemic range in closed loop 

control system. A lot of glucose-insulin dynamic model 

such as Bergman Minimal Model, Man Rizza Cobelli and 

Hovorka has been used to describe glucose-insulin system 

for type 1 diabetes patient. A modification of Hovorka 

model was carried out by (Ayub et. al, 2013).   

 The model linked insulin action subsystem 

variables to glucose subsystem variable which what is 

lacking in original Hovorka equations, the interrelation 

between parameters between its subsystems. The research 

was conducted using Modified Hovorka Equations and 

parameters used in the equation were from Hovorka model. 

The meal disturbances however were taken from real life 

T1D patients in Malaysia ranging from 15 to 17 years old. 

A lot of controller system such as Artificial Neural 

Network (ANN), Fuzzy Logic Control (FLC) and 

Proportional Integral Derivative (PID) controller were first 

researched and based on our findings; we had found that 

Model Predictive Control (MPC) as the most suitable type 

of controls in regulating blood glucose level. Objectives of 

this study is to simulate the variation of meal intake 

according to data collected from real life T1D patients and 

determine the optimum insulin infusion rate to decrease and 

maintain BGL within normoglycemic range. The 

limitations involved include that the model used only 

incorporate meal disturbance when there are other factors 

such as stress, exercise and also daily routines that 

influences the variations of blood glucose level in a given 

period of time. In addition, single hormone (insulin) is used 

to manipulate blood glucose level instead of dual hormone 

(insulin and glucagon). 

II. Methodology 
The model used is Hovorka Model with Modified Hovorka 

Equations. Parameters, constants value and CHO intake 

were taken from Hovorka Model, Modified Hovorka 

equations and real life T1D patients with the data is as 

defined respectively in Table 1, Table 2 and Table 3. Using 

system identification techniques, the original mathematical 

equations from Hovorka Model were firstly enhanced into a 

new set of equation to improve interrelation between 

glucose and insulin action subsystem. Schematic diagram 

depicting Hovorka equations and modified Hovorka 

equations are shown as in Figure 1 and Figure 2 

respectively. The modified Hovorka equations improve the 

interaction between insulin action subsystem and glucose 

mass compartment by adding the insulin on action transport 

(x1), insulin on action disposal (x2) on the non-accessible 

compartment (Q1) while on the accessible compartment 

(Q2) only insulin on action transport (x1) and insulin on 

endogenous production (x3) were added towards the 

glucose subsystem equations.  

Table 1: List of Parameters 

 

Table 2 List of Constants 

Constant’s 

Symbol 

Descriptions Value & Unit 

    Transfer rate             

    Deactivation rate             

    Deactivation rate            

    Deactivation rate            

    Activation rate            

    Activation rate            

    Activation rate            

     Activation rate           

     Activation rate             

     Activation rate             

   Insulin 

elimination from 

            

Parameter’s  

symbol 

Descriptions Value & Unit 

  
   Insulin sensitivity of 

distribution/transport 

          

                 

  
   Insulin sensitivity of 

disposal 

         

                

  
   Insulin sensitivity of 

Endogenous 

Glucose Production 

(EGP) 

         

                

     EGP extrapolated to 

zero insulin 

concentration 

        

              

    Non-insulin-

dependent glucose 

flux 

        

              

       Time-to-maximum 

of absorption of 

subcutaneously 

injected short acting 

insulin 
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plasma 

   Insulin 

distribution 

volume 

            

   Glucose 

distribution 

volume 

            

   Carbohydrate 

(CHO) 

bioavailability 

                   

       Time-to-

maximum of CHO 

absorption 

       

 

Table 3: CHO intake 

Item g CHO mol CHO 
mmol 

CHO 

Breakfast 60 2.068 2068 

Lunch 90 3.102 3102 

Dinner 90 3.102 3102 

Equations of modified Hovorka equations   
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 Equation (1) and (2) are the modified Hovorka 

equations where the insulin action variables have been 

added into.    and    constitute the mass of glucose in the 

accessible and non-accessible compartments for the glucose 

subsystem respectively.   ,    ,    ,     ,     ,      

are the transfer rate constants for the insulin action 

subsystem.     is the transfer rate constant from non-

accessible compartment to accessible compartment.      

is the Endogenous Glucose Production that was 

extrapolated to the zero insulin concentration.    is the 

quantity of glucose absorbed into blood vessel. Other than 

that,   is renal glucose clearance while   
   is the total of 

non-insulin dependent glucose flux. Equation (3) and (4) 

are the equations for insulin subsystem in the accessible 

and non-accessible compartment.S1 and S2 are insulin 

sensitivity in the accessible and non-accessible 

compartment respectively.  

 In plasma insulin concentration equation (5), 

insulin action variables have also been added. I(t) is the 

plasma insulin concentration while ke is the fractional 

elimination rate. VI is the distribution volume and UI is the 

production amount of insulin required into the blood vessel.  

 The equation (6), (7) and (8) are the insulin 

action subsystem (I) equations on action transport, action 

disposal, and endogenous production respectively. The 

constants are defined as in Table 1 and also Table 2. 
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II.1 Schematic Diagram 

 

 

 

II.2 Iteration steps 

 

III. Results and Discussion 

 As seen in Figure 4.1, the simulation was carried 

out and evaluated using the data from real life patient and it 

include patient’s body weight (BW), the instantaneous time 

during the meal taken (meal time [24-hour system]) and the 

total amount of meal taken (CHO rate in bolus size 

[mmol/min]). Other covers the time of insulin injection 

(Insulin time [24-hour system]) and the amount of insulin 

dose (Insulin rate in bolus size [mU/min]). Glucose-insulin 

dynamic was analyzed and therefore the simulation will be 

evaluated based on the parameter of amount and time of 

insulin, amount and time of meal disturbance on how it 

influences the BGC in the virtual patient. 

Step 1: Measure Glucose Level 

Step 2: Predict future glucose value from model 
predictive controller 

Step 3: Is predicted glucose value(s) within 
normoglycemic range (4.6 mmol/L to 6.0 mmol/L) 

Step 4: Determine insulin amount infusion rate from 
model predictive controller based on a target range of 

(4.6 mmol/L to 6.0 mmol/L) 

Step 5: The insulin will be infused  

Step 6: Measure blood glucose level, is it between 
normoglycemic range? 

Step 7: If no, use different value of insulin infusion rate. 
If yes, record the value of insulin infusion rate to be 

analysed and evaluated 
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Figure III-1: Simulation for insulin infusion for 1440 min 

 As seen in figure 12, the simulation was carried 

out and evaluated using the data from real life patient and it 

include patient’s body weight (BW), the instantaneous time 

during the meal taken (meal time [24-hour system]) and the 

total amount of meal taken (CHO rate in bolus size 

[mmol/min]). Other covers the time of insulin injection 

(Insulin time [24-hour system]) and the amount of insulin 

dose (Insulin rate in bolus size [mU/min]). Glucose-insulin 

dynamic was analyzed and therefore the simulation will be 

evaluated based on the parameter of amount and time of 

insulin, amount and time of meal disturbance on how it 

influences the BGC in the virtual patient.  

III.1 Outcome of insulin administration on the Blood 

Glucose Level (BGL) 

 Inside figure 12, the first peak is the meal 

disturbance for breakfast followed by lunch and dinner 

respectively. For our simulation, only single hormone 

(insulin) instead of dual hormone (glycogen) is used to 

regulate blood glucose level. The hormone that helps in 

regulating blood glucose level is the insulin which 

produced by β-cell of the pancreatic islet of the pancreas. 

Due to inability of type1 diabetes patient to produce insulin 

hormone because of their malfunctioning pancreas, the 

glucose inside their body cannot be broken into energy thus 

increasing blood glucose level within a period of time until 

they react a state called hyperglycemia. For our simulation, 

hyperglycemia is a condition where the blood glucose level 

is exceeding 6 mmol/L. For three meal intake in bolus size 

per day, a total of three insulin injection in bolus size was 

administered. The amount of carbohydrate (CHO) intake 

was taken from real life patient data with the insulin 

infusion rate was determined manually using semi-closed 

control loop system. The data was summarized as in Table. 

Bolus insulin is the insulin that was taken specifically at 

meal time to keep blood glucose level within 

normoglycaemic range for that particular meal intake. The 

insulin was taken before meal in this simulation.  

Meal 

Time 

(24-

hour 

syste

m) 

Mea

l 

Tim

e 

(mi

n) 

CH

O in 

bolu

s 

size 

(g) 

CHO 

rate 

in 

bolus 

size 

(mmo

l) 

Insuli

n time 

(24-

hour 

syste

m) 

Insuli

n 

Time 

(min) 

Insulin 

rate in 

bolus 

size 

(U/min

) 

6:00 

am 

60 
60 

2068 5:00 

am 

0 
0.0529 

3:00 

pm 

420 
90 

3102 1:10 

pm 

420 
0.0010 

10:00 

pm 

720 
90 

3102 9:300 

pm 

720 0.0000

01 

Table III-1 Meal Intake and Insulin Infused 

 Figure 4.3, 4.4 and 4.5 shows the graph for meal 

intake with insulin administered before the meal is taken. 

From Figure 12, it was observed that the BGL with the 

insulin administration is more stable than those without 

insulin administration periodically. However, if no insulin 

was administered at neither at any time for the day, the 

blood glucose level will rise up until it reaches 

hyperglycemia range with no sign of going down. Thus, it 

will be highly dangerous for the patient as they risking a lot 

of serious complications due to extremely high blood 

glucose level. The BGL was compared with previous 

research made by (Ayub et. al, 2019). 
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III.1.1 BGL FOR BREAKFAST 

 

Figure III-2: BGL during breakfast time 

 For breakfast as observed in Figure 13, the 

patient consumed a lesser amount of CHO compared to 

lunch and dinner. Therefore, only a little spike of graph 

indicating that the person had meal intake during that 

instantaneous time. However, the graph is already passing 

the 6 mmol/L range and fluctuating at the beginning 

because of the patient is actually already in the state of 

hyperglycemia in the morning. This follows the record of 

the real patient where the meal data is extracted that the 

person is actually experiencing hyperglycemia early in the 

morning. Comparing the data with (Ayub et. al, 2019), the 

graph seems to fall rightly on the normoglyvemic range 

whereas the prior research had it had it miss by about 10 

mmol/L from the normoglycaemic range in the 

hyperglycemic state. This is because in current research, we 

extended the time gap between breakfast and lunch 

therefore the curve in desired range just before lunch. Even 

though we can control the amount of insulin infused into 

the patient, the ability of the insulin itself to be absorbed 

fast or slow is highly dependent on the patient itself.  

III.1.2 BGL FOR LUNCH 

 

Figure III-3: BGL during lunch time 

 For lunch as observed in Figure 14, the patient 

consumed a higher amount of CHO compared to breakfast. 

Therefore, a higher peak of curve was observed as 

compared to breakfast when there is meal disturbance. The 

amount of insulin infused is lower than those in before 

breakfast. This is because the amount of insulin as 

calculated from the algorithm has not been fully utilized. 

Therefore, it is being used in the next round of meal 

disturbance. Thus, the graph will keep falling until it 

reaches normoglycaemic range and before the patient be in 

the state of hypoglycemic, there will be another meal 

disturbance that will increase the BGL. Comparing the 

result from previous research by (Ayub et. al, 2019), (Ayub 

et. al, 2019) had it more consistent compared to the current 

research, this might due to the low amount of insulin 

infused during breakfast which leads to more stable curve 

during dinner. The value of insulin infused could have been 

more precise as compared to current research. The 

drawback of this occurrence is that the patient will stay in 

hyperglycemic state before lunch which is an undesirable 

and dangerous condition. 

III.1.3 BGL FOR DINNER 

 

Figure III-4: BGL during dinner time 

 For dinner as observed in Figure 15, the patient 

consumed relatively the same amount of CHO as in lunch. 

The peak of curve of the dinner is lower because at the 

beginning of meal time, the BGL was already at decreased 

level compared to meal time before lunch. The simulations 

were done at 24-hour time. Thus, the patient was already 

backing at 5:00 am (time for another insulin infusion) at the 

end of dinner time. The patient was supposed to be in state 

of hyperglycemia according to data. However, for this 

simulation, due to the probability of excess insulin infused. 

It could be the reason BGL keeps falling until the patient 

wakes up the next morning as the insulin absorption is still 

ongoing within given period of time. Thus, the simulation 

might have to be extended to more than day or one full 

week to observe the change of BGL of the virtual patient. 

III.2 Outcome of insulin time administration on the 

Blood Glucose Level (BGL) 

 The insulin administered time is very important 

in managing blood glucose level. The time taken for insulin 
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infusion and the time where it is administered will affect 

the smoothness of the graph pattern in retaining BGL 

within normoglycaemic range. The insulin administered for 

the first meal disturbance simulation is 60 minutes before 

meal time. The second one is during meal and third one is 

after meal. It is shown in the graph that the blood glucose 

control is better with prior injection of insulin before any 

meal intake. Although the BGL did not dropped 

immediately, the time taken for BGL to reach 

normoglycaemic range is also quiet lengthy. The results 

have to be compared with the data of real time patient BGL 

corresponding to their insulin infusion as in the simulation. 

Take note that for subcutaneous insulin injection, the time 

taken for insulin absorption is much higher as compared to 

CHO absorption. Therefore, there is a need to prior 

injection of insulin before meal is taken. There is variety 

types of insulin in today market, the access for each patient 

to it might vary from one to the other in terms of fast or 

slow acting insulin. These variations would have affected 

the value of glucose absorption rate, UG. For this 

simulation, the insulin we are currently using is slow acting 

type of insulin. For the slow acting, the longer the gaps 

between meal intake and insulin infusion, the better control 

we have on making and retaining the BGL within 

normoglycaemic range.  

III.2.1  Insulin infusion during meal time 

 
Figure III-5: BGL graph for insulin infusion during meal time 

 As in Figure 16, the graph had shown undesirable 

outcome whereas none of the BGL dropped to 

normoglycaemic range for infusion of insulin during meal. 

This is because the insulin needs some time to react. The 

insulin inside the body has to react with the components of 

glucose which in turns take an undefined although 

predictable amount of time to convert them into energy. 

The graph however shows steady and consistent flows 

although it exceeds normoglycaemic range to the range 

between 9 to 12 mmol/L.  It is still unknown why the graph 

had been more stable when the insulin injected during meal 

time. Theoretically, it could have been the presence of 

CHO during insulin allows the insulin to react at a higher 

rate compared to infusion before meal. To compensate the 

flunk of the graph, it is recommended to increase the 

amount of insulin infusion rate.  
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III.2.2 Insulin infusion after meal time 

 
Figure III-6: BGL graph for insulin infusion after meal time 

 From Figure 17, it was seen that the addition of 

insulin after meal time is not significantly difference after 

comparing it with the graph from Figure 16, addition of 

insulin during meal time. The difference is very slight 

therefore the outcome can be concluded as indifferent when 

compared to insulin infusion after meal time graph. The 

insulin design for this equation and parameters value are 

for short acting insulin. Sensitivity towards insulin 

absorption may be modified for simulation that uses quick 

or fast acting insulin.   

III.3 Outcome of addition of Snack Time 

 There are additions of snack time in order to have 

better control on BGL curve since insulin is the only 

hormone simulates to control the BGL in this simulation 

and also the equations. In addition, currently in real time 

there are no artificial pancreases that are capable of 

delivering dual hormone (Insulin and Glucagon) other than 

4th generation artificial pancreas which is hormone insulin 

and hormone pramlintide (substitute hormone that acts such 

as glucagon). Table 4-1 shows the amount of CHO 

consumed during snack time 1 and 2 for after lunch and 

after dinner respectively. Figure 16 shows the BGL curve 

after addition of snack time.  

 

 

 

Snack 

Time 

(24-

hour 

syste

m) 

Snac

k 

Tim

e 

(min

) 

CH

O in 

bolu

s 

size 

(g) 

CHO 

rate in 

bolus 

size 

(mmo

l) 

Insuli

n time 

(24-

hour 

syste

m) 

Insuli

n 

Time 

(min) 

Insuli

n rate 

in 

bolus 

size 

(U/mi

n) 

6:00 

pm 

785 
30 

1033 5:30 

pm 

725 
0.001 

12:00 

pm 

1130 
30 

1033 11:30 

pm 

1070 
0.000 

Table III-2: Snack bolus size and insulin infusion rate 

 From Figure 18, the graph shows that the curve 

of the BGL is slightly changed due to addition of snack 

time. The addition of snack tie has improved the BGL 

curve for dinner by letting not to be so near to below 

normoglycaemic range as compared to graph without snack 

time. However, the BGL curve for lunch was slightly 

deviated by exceeding normoglycaemic range by      

mmol/L. The change is not significant and not far from 

ideal range which is between 4.5 mmol/L until 6.0 mmol/L. 

Thus, it can be said that the addition of snack time do 

improves the BGL curve significantly for dinner while not 

deviates the BGL curve part during breakfast and lunch 

meal intake. An improvement is suggested by adjusting the 

value of insulin infusion during breakfast or lunch that are 

not carried out in this simulation.  
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Figure III-7: Addition of snack time after lunch and dinner 

III.4 Outcome of Semi-Closed Model Predictive 

Control Loop System 

 In this simulation, a semi-closed loop system of 

Model Predictive Control (MPC) was implemented in order 

to obtain better control of BGL of the virtual patient body. 

The outcome for this control is seen as in the graph where 

the BGL is within normoglycaemic range prior to next 

meal. However, the value before meal is slightly 

hypoglycemic by 0.1 decimal points for breakfast and 

lunch. The time window before the next meal is highly 

important because the BGL would not have dropped to a 

desired range had the time window not been extended from 

its usual range. It is however managed to predict the right 

dose for insulin on order to drop the BGL within 

normoglycaemic range by reduced errors ±0.9 in 24-hours 

simulation time. 

III.5 Outcome of simulation in MATLAB using 

ODE45 and ODE23s and ODE 15 

 For this simulation, the equations that were used 

are modified Hovorka equations instead of original 

Hovorka equations. Hovorka equations were classified as 

non-stiff equations by (Boiroux et. al, 2010).  The 

simulations were first run using ODE Solver of ODE45 and 

ODE23s which are frequently used for stiff ordinary 

differential equations (ODE). A smoother curve plot was 

obtained when the simulations were run using ODE15. 

ODE15 is an ODE Solver that is used for stiff equations. It 

can be say as the equations of original Hovorka were partly 

modified, the modified Hovorka may be suggest as stiff 

ODE rather than non-stiff ODE.  

IV. CONCLUSION  

 In sum, the simulations was successfully carried 

out in different condition to observed and evaluate the 

difference in blood glucose control (BGC) under variety of 

conditions. Other than that, the implementations of Model 

Predictive Control in semi-closed loop system can 

contribute to better control of BGL for the virtual patient 

that use real life data for meal disturbance parameters in the 

simulation. Glucose-insulin dynamic were being observed 

as having smoother although lengthy curve when the 

equation used is modified Hovorka equations. In another 

attempt of new studies by implementing a part of this 

simulation, it is recommended to studies the impact of 

initial variables values to the control of BGL in the 

simulation for the virtual patient.  

V. ACKNOWLEDGEMENT 

 Authors of this research would like to 

acknowledge Universiti Teknologi MARA (UiTM) for 

supporting the research. 



BACHELOR OF ENGINEERING (HONS.) CHEMICAL 

 

REFERENCES 

Albisser, A., Leibel, B., Ewart, T., Davidovac, Z., Botz, C., 

& Zingg, W. (1974). An artificial endocrine 

pancreas. Diabetes, 23(5), 389-396.  

Albisser, A. M., Leibel, B., Ewart, T., Davidovac, Z., Botz, 

C., Zingg, W., . . . Gander, R. (1974). Clinical 

control of diabetes by the artificial pancreas. 

Diabetes, 23(5), 397-404.  

Bok Lee, J., Dassau, E., E. Seborg, D., & J. Doyle, F. 

(2013). Model-based personalization scheme of 

an artificial pancreas for Type 1 diabetes 

applications. 

Chakrabarty, A., Zavitsanou, S., Doyle, F. J., & Dassau, E. 

(2018). Event-triggered model predictive control 

for embedded artificial pancreas systems. IEEE 

Transactions on Biomedical Engineering, 65(3), 

575-586.  

Cho, S., & Shin, M. S. (2001). Neural network based 

automatic diagnosis of children with brain 

dysfunction. International journal of neural 

systems, 11(04), 361-369.  

Dalla Man, C., Rizza, R. A., & Cobelli, C. (2007). Meal 

simulation model of the glucose-insulin system. 

IEEE Transactions on Biomedical Engineering, 

54(10), 1740-1749.  

Daud, M., Atikah, N., Mahmud, F., & Jabbar, M. H. 

(2015). Meal simulation in glucose-insulin 

reaction analysis using Hovorka Model towards 

system-on-chip implementation.  

Doyle III, F. J., Dassau, E., Seborg, D. E., & Lee, J. B. 

(2015). U.S. Patent Application No. 14/792,524. 

El-Jabali, A. K. (2005). Neural network modeling and 

control of type 1 diabetes mellitus. Bioprocess 

and biosystems engineering, 27(2), 75-79.  

Fisher, M. E. (1991). A semiclosed-loop algorithm for the 

control of blood glucose levels in diabetics. IEEE 

Transactions on Biomedical Engineering, 38(1), 

57-61. doi:10.1109/10.68209 

Forlenza, G. P., Cameron, F. M., Ly, T. T., Lam, D., 

Howsmon, D. P., Baysal, N., . . . Levister, C. 

(2018). Fully Closed-Loop Multiple Model 

Probabilistic Predictive Controller Artificial 

Pancreas Performance in Adolescents and Adults 

in a Supervised Hotel Setting. Diabetes 

technology & therapeutics, 20(5), 335-343.  

Hovorka, R., Canonico, V., Chassin, L. J., Haueter, U., 

Massi-Benedetti, M., Federici, M. O., . . . Vering, 

T. (2004). Nonlinear model predictive control of 

glucose concentration in subjects with type 1 

diabetes. Physiological measurement, 25(4), 905.  

Hovorka, R., Shojaee-Moradie, F., V Carroll, P., Chassin, 

L., J Gowrie, I., Jackson, N., . . . Jones, R. 

(2002). Partitioning glucose 

distribution/transport, disposal, and endogenous 

production during IVGTT (Vol. 282). 

Jennifer Robinson, M. (2018, January 11). A visual guide 

to diabetes.   Retrieved from 

https://www.webmd.com/diabetes/ss/slideshow-

type-1-diabetes-overview 

Lee, H., & Bequette, B. W. (2008). A closed-loop artificial 

pancreas based on MPC: human-friendly 

identification and automatic meal disturbance 

rejection. IFAC Proceedings Volumes, 41(2), 

4252-4257.  

Lee, J. B., Dassau, E., Gondhalekar, R., Seborg, D. E., 

Pinsker, J. E., & Doyle III, F. J. (2016). 

Enhanced model predictive control (eMPC) 

strategy for automated glucose control. Industrial 

& engineering chemistry research, 55(46), 

11857-11868.  

Leonard, B. L., Evans, R. G., Navakatikyan, M. A., & 

Malpas, S. C. (2000). Differential neural control 

of intrarenal blood flow. American Journal of 

Physiology-Regulatory, Integrative and 

Comparative Physiology, 279(3), R907-R916.  

Lynch, S. M., & Bequette, B. W. (2002). Model predictive 

control of blood glucose in type I diabetics using 

subcutaneous glucose measurements. Paper 

presented at the American Control Conference, 

2002. Proceedings of the 2002. 

Magni, L. (2012). Model Predictive Control for Type 1 

Diabetes. Paper presented at the 4th IFAC 

Nonlinear Model Predictive Control Conference 

Internantional Federation of Automatic Control, 

Noordwijkerhout, NL.  

Mauseth, R., Lord, S. M., Hirsch, I. B., Kircher, R. C., 

Matheson, D. P., & Greenbaum, C. J. (2015). 

Stress testing of an artificial pancreas system 

with pizza and exercise leads to improvements in 

the system’s fuzzy logic controller. Journal of 

diabetes science and technology, 9(6), 1253-

1259.  

Messori, M., Incremona, G. P., Cobelli, C., & Magni, L. 

(2018). Individualized model predictive control 

for the artificial pancreas: In silico evaluation of 

closed-loop glucose control. IEEE Control 

Systems, 38(1), 86-104.  

Nimri, R., Muller, I., Atlas, E., Miller, S., Fogel, A., 

Bratina, N., . . . Phillip, M. (2014). MD-Logic 

overnight control for 6 weeks of home use in 

patients with type 1 diabetes: randomized 

crossover trial. Diabetes Care, DC_140835.  

Pender, J. (1997). Modelling of blood glucose levels using 

artificial neural networks. Dissertation. Glasgow, 

Scotland: University of Strathclyde.    

Phillip, M., Battelino, T., Atlas, E., Kordonouri, O., 

Bratina, N., Miller, S., . . . Nimri, R. (2013). 

Nocturnal glucose control with an artificial 

pancreas at a diabetes camp. New England 

Journal of Medicine, 368(9), 824-833.  

Pinsker, J. E., Lee, J. B., Dassau, E., Seborg, D. E., 

Bradley, P. K., Gondhalekar, R., . . . Doyle, F. J. 

(2016). Randomized crossover comparison of 

personalized MPC and PID control algorithms for 

the artificial pancreas. Diabetes Care, dc152344.  

Prank, K., Jürgens, C., von zur Mühlen, A., & Brabant, G. 

(1998). Predictive neural networks for learning 

the time course of blood glucose levels from the 

complex interaction of counterregulatory 

hormones. Neural Computation, 10(4), 941-953.  

Resalat, N., El Youssef, J., Reddy, R., & Jacobs, P. G. 

(2016). Design of a dual-hormone model 

predictive control for artificial pancreas with 



BACHELOR OF ENGINEERING (HONS.) CHEMICAL 

 

exercise model. Paper presented at the 

Engineering in Medicine and Biology Society 

(EMBC), 2016 IEEE 38th Annual International 

Conference of the. 

Sandham, W., Hamilton, D., Japp, A., & Patterson, K. 

(1998). Neural network and neuro-fuzzy systems 

for improving diabetes therapy. Paper presented 

at the Engineering in Medicine and Biology 

Society, 1998. Proceedings of the 20th Annual 

International Conference of the IEEE. 

Sandham, W., Nikoletou, D., Hamilton, D., Paterson, K., 

Japp, A., & MacGregor, C. (1998). Blood glucose 

prediction for diabetes therapy using a recurrent 

artificial neural network. Paper presented at the 

Signal Processing Conference (EUSIPCO 1998), 

9th European. 

Som, A. M., Yusof, N. F. M., Ali, S. A., & Fuzil, N. S. 

(2017). Meal disturbance effect on blood glucose 

control for type 1 diabetes using improved 

Hovorka Equation.  

Steil, G. M., Palerm, C. C., Kurtz, N., Voskanyan, G., Roy, 

A., Paz, S., & Kandeel, F. R. (2011). The effect 

of insulin feedback on closed loop glucose 

control. The Journal of clinical endocrinology 

and metabolism, 96(5), 1402-1408. 

doi:10.1210/jc.2010-2578 

Steil, G. M., Rebrin, K., Janowski, R., Darwin, C., & Saad, 

M. F. (2003). Modeling β-cell insulin secretion-

implications for closed-loop glucose homeostasis. 

Diabetes technology & therapeutics, 5(6), 953-

964.  

Tresp, V., Moody, J., & Delong, W.-R. (1994). Neural 

network modeling of physiological processes. 

Paper presented at the Proceedings of the 

workshop on Computational learning theory and 

natural learning systems (vol. 2): intersections 

between theory and experiment: intersections 

between theory and experiment. 

Watson, E. M., Chappell, M. J., Ducrozet, F., Poucher, S., 

& Yates, J. W. (2011). A new general glucose 

homeostatic model using a proportional-integral-

derivative controller. Computer methods and 

programs in biomedicine, 102(2), 119-129.  

Yen, G. G., & Meesad, P. (2001). Constructing a fuzzy 

rule-based system using the ILFN network and 

genetic algorithm. International journal of neural 

systems, 11(05), 427-443.  

Yusof, N. F. M., Som, A. M., Ibrehem, A. S., & Ali, S. A. 

(2012). Parameter addition in interaction of 

glucose and insulin for type 1 diabetes. Paper 

presented at the Biomedical Engineering and 

Sciences (IECBES), 2012 IEEE EMBS 

Conference on. 

 

 


