

**NANOFIBROUS BIOINORGANIC HYBRID
STRUCTURES FORMED THROUGH SELF-
ASSEMBLED PEPTIDE (FKFSFEFEFKFK)**

RIAN AIDIL BIN MAT NASIR

Bachelor of Engineering (Hons) Chemical and Bioprocess

**Faculty of Chemical Engineering
UNIVERSITI TEKNOLOGI MARA**

JULY 2017

ACKNOWLEDGEMENT

First of all, my grateful praise to Allah S.W.T, The All Mighty, by giving me strength mentally physically and also good health for completing my research project. Without His permission, maybe I cannot finish it up until today. During the research, I had given all my effort and idea which is, this thesis already has come to successful result and complete writing.

As the author, I have taken efforts in this work of study. However, it would not have been possible without kind support and help of many individuals. I would like to extend my sincere thanks to all of them.

I would like to express my appreciation to Dr Tan Huey Ling and Dr Farid Mulana for their guidance and constant supervision as well as for providing necessary informations regarding the case study in completing the project.

I highly indebted to the Department of Chemical Engineering staff, technician and fellow friends for their support and cooperation which helps in completion of this project.

I also would like to express my thanks to all researchers and writers from journal and website respectively, that supplying me a lot of important information for my research project and even for my own knowledge. I have learnt so many new things from doing this thesis with their tips and information to complete my thesis with successful result. In the future research, I hope my thesis could be one of good references and examples for those that need information related to this research project.

Lastly, special thanks to my family who encouraged me during my study in UiTM. They had given me a lot of moral support towards the completion of this project. Thank you all.

TABLE OF CONTENTS

ABSTRACT	1
CHAPTER 1	2
1.1 BACKGROUND STUDY	2
1.2 PROBLEM STATEMENT	6
1.3 OBJECTIVES	7
1.4 SCOPES	7
1.5 SIGNIFICANCE OF STUDY	8
CHAPTER 2	10
LITERATURE REVIEW	10
2.1 SELF-ASSEMBLING PEPTIDES SUPRAMOLECULER STRUCTURES	10
2.1.1 DISCOVERY OF SELF-ASSEMBLING PEPTIDES	10
2.1.2 PEPTIDE NANOSTRUCTURES	11
2.1.3 STRUCTURAL PROPERTIES OF SELF-ASSEMBLING PEPTIDES	17
2.1.4 PEPTIDE NANOFIBER SCAFFOLDS	17
2.2 PREPARATION METHOD OF HAp SYNTHESIS	18
2.2.1 DRY METHOD	19
2.2.2 WET METHODS	22
2.3 MINERALIZATON ON PEPTIDE AMPHIPILE NANOFIBER SURFACES	25
2.4 APPLICATIONS OF NANO PRODUCTS	26
2.4.1 SELF-ASSEMBLING PEPTIDES FOR DRUG DELIVERY APPLICATIONS	27
2.4.2 APPLICATION OF SELF-ASSEMBLING PEPTIDES FOR VACCINATION	30
2.4.3 SELF-ASSEMBLING PEPTIDES FOR TISSUE REGENERATION APPLICATIONS	31
CHAPTER 3	32
RESEARCH METHODOLOGY	32
3.1 INTRODUCTION	32
3.2 METHOD SYNTHESIZE OF HAp	33
(a) SYNTHESIS OF HAp NANOPARTICLES	33
(b) PREPARATION OF SUPERSATURATED HYDROXYLAPATITE (HAp) SOLUTION	33
3.3 MINERALIZATION OF HAp WITH PEPTIDES	34
3.4 CHARACTERIZATION OF NANOPARTICLES	34
3.4 (a) FOURIER TRANSFORMS INFRARED SPECTROSCOPY (FT-IR)	34
3.4 (b) INDUCTIVE COUPLING PLASMA	34
3.4 (c) POWDER X-RAY DIFFRACTION (XRD)	34
3.4 (d) GEOLOGY MICROSCOPE	35

ABSTRACT

Self-assembling peptides have gained a lot attention as its abilities been revealed in which can spontaneously experience self-organization into well-ordered structures. Consequently, it promotes another road for the creation of biological materials. In past years, traditional therapeutic strategies for injuries requiring bone regeneration resulting from donor-site morbidity and patient discomfort have led to the exploration of a variety of peptide-based and other bone regeneration. Since this revelation, different classes of short peptides have been fabricated with wide applications which include bone regeneration, reparative medicine, tissue designing, and drug delivery. This project involves discovering how nanofibrous bioinorganic hybrid structures can be formed through self-assembled peptide specified (FKFSFEFEFKFK). One of the ultimate goal is to observe the morphology and characterize the nanofibrous hybrid structures formed. This is done by synthesizing and characterizing the hydroxyapatite (HAp) at the first place. Then, followed by mineralization of HAp with the self-assembled peptide (FKFSFEFEFKFK) resulting nanofibrous hybrid structures to be formed. These structures are then analysed using sodium iodide and distilled water as their parameters on structural component. Several equipment and tools were involved such as Fourier Transforms Infrared spectroscopy (FT-IR), X-ray diffractor (XRD), Inductive Coupling Plasma (ICP) and Geology for characterization purposes. Also, the application of nanofiber hybrid structures for biomimicry of bone recovery will be further discussed in next section. Upon completion of these project, the finding may be useful to solve problems regarding fabrication of biomaterial and address the role of self-assembled together with HAp as inorganic material on biominerlization.

CHAPTER 1

1.1 BACKGROUND STUDY

Nanofibrous organic-inorganic hybrid structures is said to be exist when inorganic nanocomponents are framed or collected inside the aligned organic nanofibrous matrix. This is considered critical materials as their applications able to discover in electronics, photonics, catalysis, and tissue engineering. They not just give a way to support and requesting the functional inorganic materials, for example, nanoparticles, additionally can serve as building blocks in order for further self-assemble into higher-order structures. There are several regular ways to deal with the synthesis of the nanofibrous organic-inorganic hybrid structures which incorporate polymer templating, electrospinning, biotemplating and directional freezing. As an obvious reality, the nanofibrous organic-inorganic mixture structures are vital building block in characteristic mineralized biomaterials. One of the best cases is the mineralized collagen fibrils constituting the extracellular network (ECM) of bone. Bone is made of cells inserted in ECM, which is progressively sorted out from proteins, including sort I collagen and non-collagenous proteins (NCPs, for example, bone sialoprotein (BSP), and calcium hydroxyapatite (HAP, $\text{Ca}^{10}(\text{PO}_4)^6(\text{OH})^2$). The collagen atoms (~1.5 nm wide and 300 nm long) are self-assembled into more extensive (up to 200 nm wide) and more (a few μm long) fibrils in a side-to-side and go to tail arrange, which are further progressively self-assembled to shape much more extensive and longer collagen strands (up to a few tens μm wide and long). HAP is found inside the gaps and grooves of the collagen fibers with its c-pivot specially along the collagen strands.

Hydroxyapatite (HAp) is known as one of the developing most bioceramic, which is generally utilized as a part of different biomedical applications, for the most part in orthopedics and dentistry because of its nearby similarities with inorganic mineral component of bone and also teeth. It has remarkable biocompatibility and unique bioactivity.