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Abstract— From a secondary supercritical extraction data 
of muskmelon seed which was obtained from the work 
done by J. Prakash Maran and B. Priya, a suitable 
mathematical model was found for the oil yield extracted. 
The reason this study was done is to obtain a model for the 
process which will be able to predict oil yield of future 
experiments on supercritical carbon dioxide extraction of 
muskmelon seed oil. An application of Artificial Neural 
Network model was used where it was trained until desired 
output was obtained. A simple mathematical model was 
derived by applying the equation of straight line to the 
regression plot of the model. The regression value of the 
plot is 0.97. The average absolute deviation obtained for 
the comparison of actual and model oil yield is 2.63%. The 
actual oil yield and model values show good agreement 
with each other thus making the model obtained reliable to 
be used in the future.  
 

Keywords— Artificial Neural Network, Modeling, Muskmelon 
seed oil, Supercritical fluid extraction 

I. INTRODUCTION 

Muskmelon (Cucumis melo) is a fruit under the melon species. 
It has been cultivated into many types such as honeydew, 
crenshaw, casaba as well as variety of cultivars namely cantaloupe, 
persian melon and christmas melon. The armenian cucumber is 
known as a type of muskmelon but it resembles mostly to 
cucumbers. This fruit has such an assortment in variation that it 
was even grown in a square shape (Ellis, 2004).      
 In character with other fruits, muskmelon has seeds. Typically, 
its seeds are thrown away after the fruit is being consumed. 
Muskmelon seeds are known to contain oil which is very beneficial 
to the human health. Therefore, muskmelon seeds have a potential 
to be a good substitute resource for vegetable oil production (Priya, 
2014).                  
 Supercritical carbon dioxide (SC-CO2) as the solvent for 
extraction is accepting a big attention as a potential industrial 
solvent. This fluid possesses diffusivity and viscosity which are 
similar to a gas. While its density and solvent power are liquid-like. 
Through simple depressurization, SC-CO2 easily separates from the 
extracted product (Fiori, Duba, & Luca, 2016).      
 Moreover, by tuning the operating conditions of process, 
thermodynamic properties of SC-CO2 can be adjusted. This solvent 
is also commonly preferred over other solvents such as n-hexane 
due to its non-flammable and non-toxic properties (Sodeifian, 
Ghorbandoost, Sajadian, & Ardestani, 2015).        
 A mathematical model is commonly used to represent a set of 
data. In this case, a model for extraction process on its oil yield will 
be obtained. The uses of a model are for process optimization and 
scale up process. Furthermore, oil yield can be easily predicted by 
 

 

inserting parameters for different temperatures and pressures 
without having to conduct the experiment. Example of well-known 
mathematical models which are applied for vegetable materials are 
Sovova’s broken and intact model (BICM) and shrinking-core 
model (SCM). Other method for mathematical modeling is by 
using Artificial Neural network (ANN) (Olivier Boutina, 2011).  

For this particular research, ANN modeling will be used. ANNs 
are computational structures which has basic process units 
connected to each other namely the neurons. ANN has been widely 
used in function fitting and pattern recognition. Feed forward 
neural network was used which contains one input layer and a 
single or a few hidden layers as well as an output layer. Levenberg-
Marquardt method was used to train this network where training an 
algorithm is done to achieve the best possible outputs from it. This 
method is more on the trial and error side. ANN does tasks which 
resembles to the human brain where it gains knowledge during 
learning and stores it inside the inner neuron (Tehlah, Kaewpradit, 
& Mujtaba, 2016).                   
     The objective of this study is to obtain a 
mathematical model which fits the experimental data of 
muskmelon seed oil extraction using supercritical carbon dioxide 
as the solvent. The model then can be used to predict oil yield of 
future experiments on SC-CO2 extraction of muskmelon seed oil. 

II. METHODOLOGY 

1. Artificial Neural Network modeling 
The procedure for this research was separated into two parts. 

The first one was the selection for the most suitable number of 
neurons to be trained. For the second part, the oil yield was 
predicted by using the best neuron number. Note that before 
proceeding with training the networks using ANN, a secondary 
data was first obtained from previous research conducted. The 
application of ANN is applied through the usage of MATLAB 
software.  

The best neuron number was to be selected by training number 
of neurons from 1 to 25. Secondary data was inputted from an 
excel file to the command window through copy paste option. 
Target and input were defined in the command window. Function 
fitting design tool was called by inputting “nftool” in the command 
window. Training, validation and testing were selected to be 70%, 
15% and 15% respectively. Number of hidden neurons was 
inputted to be 1. Levenberg-Marquardt was selected as the network 
to be trained. The network was retrained until all of the regression 
values reached over 0.80.  

When the best neuron number has been found, multiple trainings 
on the network using the specific neuron number was done. 
Training was stopped when regression values were above 0.95 and 
mean square error values were acceptable. The output of the yield 
was then displayed in the command window. 
 From the regression plot, equation of straight line was used to 
produce a simple mathematical model for this study. 

2. Finding the most suitable number of neuron to be trained 
In the effort to find the best model representing the oil yield 

extracted for SFE secondary data for the muskmelon seeds, 
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training of the Artificial Neural Network was done. Further 
discussion on the outcome of the research are presented below.  

 
Fig 1: Bar chart of MSE VS number of neurons 
 
It can be seen from figure 1, effect of neuron number was 

investigated for this network. The neuron number was trained from 
1 to 25. Different number of neurons were trained and tested to 
find the most suitable number to be used for the secondary data. 
Figure 1 depicts number of neurons trained with their respective 
MSE values. It can clearly be seen that 21 neuron number has the 
lowest MSE value and was chosen as the best neuron number to be 
used for this research. 

III. RESULTS AND DISCUSSION  

1. Regression plot and error histogram of network 
Figure 2 shows the regression plot of the network. They present 

the relationship between the target and output. Network with 21 
neuron number was trained until the R values for all four graphs 
namely training, validation, test and all reach over 0.95. Regression 
values are nearly equal to 1 which are very desirable, which 
measures that the data are very close to the fitted regression line. 
From the ‘All’ regression plot, a model is obtained by applying the 
straight line equation, y=mx+c. The model obtained is shown 
below. 
y = 0.7006x + 0.075 

 
 

Fig 2: Regression graphs for the trained model with 21 neuron number 
 

As for figure 3, it depicts the error histogram of the trained 
network. It visualizes the errors between target and predicted 
values. It can be seen that training values give the smallest errors as 
compared to testing and validation values, which tallies with the 
regression values presented in figure 2. 

 

 
Fig 3: Error histogram for the trained model with 21 neuron number 

 

2. Model adequacy 
Table 4.1 presents the predicted oil yield values by the network. 

The actual oil yield and the predicted oil yield values were 
compared and calculation on errors were made. The average 
absolute deviation was calculated using the equation below and 
2.63% was obtained.  

AAD (%) =  | x 100       

 
Fig 4: A plot of model against actual oil yield data 

 From the tabulated result in table 1, a plot of model against 
actual oil yield data was done and is depicted through figure 4. It is 
very crucial to ensure that the model gives an adequate 
approximation to the actual values. Diagnostic plot of model versus 
actual aids in the evaluation of model stability as well as enabling 
to analyze the correlation between model and actual values. It can 
be seen that the data points on figure 4 are decently near to the 
straight line. This of course shows that actual data from the 
secondary data as well as the predicted values given by the model 
have reasonable agreements with each other.       
 From figure 4, it is safe to say that the simple model applied to 
fit the extraction of oil yield for this research is sufficient whereby 
ANN model was trained and applied.  
 

3. Effect of parameters 
Moving on to the effect of parameters towards the oil extraction. 

Discussion on effect of pressure, time and temperature were done. 
 
3.1 Effect of pressure on oil yield 
 
Pressure is known to be one of the crucial parameters in oil 

extraction using SFE technique. As depicted in figure 5, increase in 
pressure leads to an increase in oil yield. Pressure increment leads 
to increase in fluid density, thus making distance between 
molecules closer. This happens due to the breaking effect because 
of the higher pressure. This will then strengthen the interactions 
between matrix and fluid making oil extraction more efficient.   
 Pressure increase from 30 to 40 MPa shows a drastic increment 

R2 = 0.97 
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in oil yield as compared to from 40 to 50 MPa which shows lesser 
increment gap. This is due to in nature all seeds have their own 
limits on how much they are able to sustain the pressure. Beyond 
certain pressure, increasing the pressure will decrease the oil 
extraction.                 
 Comparing the model and actual plots, a reasonable agreement 
of the model and actual oil yield are obtained. This can be seen for 
all pressure plots as shown in figure 5. It can also be seen that at 
constant temperature of 40ºC, highest oil yield obtained is at the 
pressure of 50 MPa, with approximately 36% oil yield extracted. 

Figure 6 presents the oil extraction plots at constant temperature 
of 50ºC. As compared to figure 5 which only give the highest oil 
yield of 36%, figure 6 gives a higher oil yield with the value of 
42% at 50 MPa. This is due to the effect of higher temperature 
gives higher oil yield as discussed previously.       
 Higher pressure gives higher oil yield as well in figure 6, it is 
the same as in figure 5. High pressure is known to compress the 
seeds and extractable components will be easily dissolved in 
supercritical carbon dioxide. This makes mass transfer between the 
solid matrix and solvent fluid much more efficient.       
  Pressure increase from 30 to 40 MPa shows a more drastic 
increment in oil yield as compared to from 40 to 50 MPa, which is 
the same as in figure 5. The model and actual plots of the figure 
also show a decent agreement with each other.  

Moving on another plot which is at constant temperature of 
60ºC, highest oil yield of 49% is obtained. Pressure increase from 
30 to 40 MPa shows a drastic increment in oil yield just as depicted 
in both figure 5 and 6. However, it can be seen in figure 7 that 
pressure increment from 40 to 50 MPa shows a very close oil 
extraction yield values as the plot almost overlaps each other. This 
shows that at 60ºC, further increase of pressure starting from 40 
MPa will not give significant increment towards the oil yield at this 
temperature. This thus shows the optimum pressure at this 
temperature lies in between 40 to 50 MPa, nothing more than this 
pressure range.                  
 It can also be seen through this figure that model and actual 
plots of oil yield show a good agreement with each other just as 
figure 5 and 6 depicts in the case of constant temperature.     
   It can be concluded from figure 5, 6 and 7 that higher 
pressure gives higher oil yield. This observation is linked to the 
increase in solute-solvent interactions with higher compressed 
carbon dioxide. These results tallies with other supercritical carbon 
dioxide extraction of sunflower oil and grape seed oil which were 
studied by Olivier Boutin and Natacha Rombaut respectively.  

 
3.2 Effect of extraction time on oil yield 
 
Discussing on  the effect of time towards increase in pressure at 

constant temperature, all three figures 5, 6 and 7 show dramatic oil 
extraction increment from 0 minute to the 60th minute. This is due 
to during the first 60 minutes, bigger amount of extractable 
components exist in the surface of the seeds which allow SC-CO2 
to easily extract the oil. However, after the 60th minute, oil 
extraction increases slower. This is because, most of the oil which 
is still held by the seeds are within the deeper inner cell. This 
requires SC-CO2 to diffuse deeply into the cell extracting the 
leftover oil. Which of course result in smaller change of oil 
extraction as compared to the first 60 minutes.         
  At higher pressure and temperature as shown in figure 7, 
increase in time shows an almost constant value of oil extracted, 
this is due to at a certain pressure and temperature and with the 
increase of time, very little or no change of oil yield occur. Similar 
behaviour has been shown for extraction of oil from Pistacia 
Khinjuk, a study done by G. Sodeifan.          
 The effect of extraction time discussed above applies for 
increase in temperature at constant pressure as well, as the pattern 
of the graphs as shown in figure 8, 9 and 10 are similar to as of the 
graphs at constant temperature shown in figure 5, 6 and 7.  
 

 

 
Fig 5: Plot of oil yield of actual and predicted values against time at 
constant temperature 40ºC 
 
 

 
Fig 6: Plot of oil yield of actual and predicted values against time at 
constant temperature 50ºC 
 

 
Fig 7: Plot of oil yield of actual and predicted values against time at 
constant temperature 60ºC 
 

 
 
3.3 Effect of temperature on oil yield 
 
Onto the effect of temperature, figure 8 presents oil yield 

extraction trend at constant pressure of 30 MPa, with pressure 
increment from 40ºC to 60ºC. It can be clearly seen that increase in 
temperature leads to increment of oil yield. It is known that with 
the increase of temperature, extraction efficiency is optimized. This 
is linked to the increased vapor pressures and higher thermal 
desorption of oil from the seed.  Comparing the model and actual 
plots, a reasonable agreement of the model and actual oil yield are 
obtained. This can be seen for all temperature plots as shown in 
figure 8. It can be seen that at constant pressure of 30 MPa, highest 
oil yield obtained is at the temperature of 60ºC, with approximately 
32% oil yield extracted.          Figure 9 
presents the oil extraction plots at constant pressure of 40 MPa. As 
compared to figure 8 which only give the highest oil yield of 32%, 
figure 9 gives a higher oil yield with the value of 48% at 60ºC. 
This is due to the effect of higher pressure gives higher oil yield. 
Higher temperature gives higher oil yield as well in figure 9, it is 
the same as in figure 8. This experimental observation can be 
associated with components which have high molecular weight 
such as oils could be extracted efficiently under the combination of 
high carbon dioxide temperatures and pressures.       
 The model and actual plots of the figure also show a decent 
agreement with each other.  
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Moving on to the final plot which is at constant pressure of 50 
MPa, highest oil yield of 49% is obtained. It can also be seen 
through this figure that model and actual plots of oil yield show a 
good agreement with each other just as figure 8 and 9 depicts in the 
case of constant pressure.               
 It can be concluded from figure 8, 9 and 10 that higher 
temperature gives higher oil yield. This observation is linked to the 
increase in solute-solvent interactions with higher thermal activity 
of carbon dioxide. These results agree with other supercritical 
carbon dioxide extraction of sunflower oil and grape seed oil which 
were studied by Olivier Boutin and Natacha Rombaut respectively. 
 A mathematical model was successfully obtained which 
represents the oil yield extracted for SFE of the muskmelon seeds 
through the application of Artificial Neural Network.  
 

 
Fig 8: Plot of oil yield of actual and predicted values against time at 
constant pressure 30 MPa 

 

Fig 9: Plot of oil yield of actual and predicted values against time at 
constant pressure 40 MPa 

 

Fig 10: Plot of oil yield of actual and predicted values against time at 
constant pressure 50 MPa 

 

 

 

 

 
Table 1: Data parameters of the experiment with actual and predicted oil 

yield 

 

IV. CONCLUSION 
Secondary data of muskmelon seed oil which was extracted by 

SFE was used and a simple mathematical model was developed 
from the data. By applying ANN model, neuron number of 21 was 
trained until regression value of 0.97 was obtained. The oil yield 
was modeled as a function of independent variables namely the 
pressure, temperature and extraction time.         
 On the mathematical modeling, the results which were obtained 
are encouraging. However, it is not a perfect model as it is only a 
predictive tool. It still of course can be used for future oil yield 
prediction on future experiments of SC-CO2 extraction of 
muskmelon seed oil. The model gives an average absolute 
deviation of 2.63%, which is fairly sufficient to be used.    
    For this study, it is also found that increase in 
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parameters such as pressure, time and temperature lead to 
increment of the oil yield. 

 

ACKNOWLEDGMENT 
Thank you to my supervisor, Dr Norhuda Binti Ismail and 

Universiti Teknologi Mara 

 

References 
[1]    Atova, Z. P. (2015). Proximate composition of seeds 

and seed oils from melon (Cucumis melo L.) cultivated 
in Bulgaria. Cogent Food and Agriculture, 1-15. 

[2]    Barrales, F. M., Rezende, C. A., & Martinez, J. (2015). 
Supercritical Carbon Dioxide extraction of passion 
fruit seed oil assisted by ultrasound. The Journal of 
Supercritical Fluids, 183-192. 

[3]    C.F. Silva, M. M. (2008). Supercritical Carbon 
Dioxide Extraction of Macadamia Nut Oil: 
Experiments and Modelling. Brazilian Journal of 
Chemical Engineering, 175-181. 

[4]    Casquilho, M., Bernardo-Gil, G., & Miguel. (2007). 
Modeling the Supercritical Fluid Extraction of 
Hazelnut and Walnut Oils. Bioengineering, food, and 
natural products, 2980-2985. 

[5]    Ellis, R. (2004). Seeds Handbook: Biology, 
Production, Processing and Storage. New York: 
Marcel Dekker. 

[6]    Extraction Methods for Essential Oils. (2015). 
Retrieved 17 November, 2016, from Association for 
the International Research of Aromatic Science and 
Education: www.airase.com 

[7]    Fiori, Duba, K. S., & Luca. (2016). Solubility of grape 
seed oil in supercritical carbon dioxide: Experiments 
and modeling. The Journal of Chemical 
Thermodynamics, 44-52. 

[8]    Fiori, L. (2009). Supercritical extraction of sunflower 
seed oil: Experimental data and model validation. The 
Journal of Supercritical Fluids, 218-224. 

[9]    Francisco Manuel Barrales, C. A. (2015). Supercritical 
Carbon Dioxide extraction of passion fruit seed oil 
assisted by ultrasound. The Journal of Supercritical 
Fluids, 183-192. 

[10] Gholamhossein Sodeifian, S. G. (2015). Extraction of 
oil from Pistacia khinjuk using supercritical carbon 
dioxide: Experimental and modeling. The Journal of 
Supercritical Fluids, 265-274. 

[11] H. Baghaei, F. S. (2008). Orange-cantaloupe Seed 
Beverage: Nutritive value, Effect of Storage Time and 
Conditon on Chemical, Sensory and Microbial 
Properties. World Applied Sciences Journal, 753-763. 

[12] Henry I. Castro-Vargasa, L. I.-V.-A. (2010). Guava 
(Psidium guajava L.) seed oil obtained with a 
homemade supercritical fluid. The Journal of 
Supercritical Fluids, 238-242. 

[13] Inventor of advanced process technology. (2012). 
Retrieved 15 October, 2016, from Anderson 
International Corp: www.andersonintl.net 

[14] Ixtainab, V. Y., Vegaa, A., Nolascoc, S. M., Tomásb, 
M. C., Gimenoa, M., Bárzanaa, E., & Tecantea, A. 
(2010). Supercritical carbon dioxide extraction of oil 
from Mexican chia seed: Characterization and process 

optimization. The Journal of Supercritical Fluids, 192-
199. 

[15] Kapoor, S. (17 December, 2015). 20 Reasons Why 
Muskmelon is Healthy for You! Retrieved 14 October, 
2016, from Practo Health Feed: www.practo.com 

[16] Mabberley, D. (1987). The Plant Book, A portable 
dictionary of the higher plants. Cambridge: Cambridge 
University Press. 

[17] Mateljan, G. (2007). The World's Healthiest Foods. 
Washington . 

[18] Natacha Rombaut, R. S.-L. (2013). Grape seed oil 
extraction: Interest of supercritical fluid extraction and 
gas-assisted mechanical extraction for enhancing 
polyphenol co-extraction in oil. Comptes Rendus 
Chimie, 284-292. 

[19] Olivier Boutina, A. D.-H. (2011). Experimental and 
modelling of supercritical oil extraction from 
rapeseeds and sunflower seeds. Chemical Engineering 
Research and Design, 2477-2484. 

[20] Onur Döker, U. S. (2009). Extraction of sesame seed 
oil using supercritical CO2 and mathematical 
modeling. Journal of Food Engineering, 360-366. 

[21] Priya, J. P. (2014). Supercritical fluid extraction of oil 
from muskmelon (Cucumis melo) seeds. Journal of 
The Taiwan Institute of Chemical Engineers, 71-78. 

[22] R. M. F. Vargas, E. C.-S.-S. (2006). Supercritical 
extraction of Carqueja Essential Oil: Experiments and 
Modeling. Brazilian Journal of Chemical Engineering, 
375-382. 

[23] Rashid, U., Rahman, H. A., Hussain, I., & Ibrahim, M. 
(2011). Muskmelon seed oil: A potential non-food oil 
source for biodiesel production. Energy, 5632-5639. 

[24] Sahil, G., Shariff, A., Shaikh, M., Bhajan, L., Humbul, 
S., & Nor, F. (2017). Experimental data, 
thermodynamic and neural network modeling of 
carbon dioxide solubility in aqueous sodium salt of L-
phenylalanine. Journal of Carbon Dioxide Utilization, 
146-156. 

[25] Silva, C., Mendes, M., Pessoa, F., & Queiroz, E. 
(2008). Supercritical Carbon Dioxide Extraction of 
Macadamia Nut Oil: Experiments and Modelling. 
Brazilian Journal of Chemical Engineering, 175-181. 

[26] Sodeifian, G., Ghorbandoost, S., Sajadian, S. A., & 
Ardestani, N. S. (2015). Extraction of oil from Pistacia 
khinjuk using supercritical carbon dioxide: 
Experimental and modeling. The Journal of 
Supercritical Fluids, 265-274. 

[27] Soltani. (2016). Determination of optimal combination 
of applied water and nitrogen for potato yield using 
response surface methodlogy (RSM). Journal of 
Bioscience Biotechnology Research Communication, 
46-54. 

[28] Tehlah, N., Kaewpradit, P., & Mujtaba, I. (2016). 
Artificial neural network based modeling and 
optimization of refined palm oil process. 
Neurocomputing, 489-501. 

[29] Umer Rashid, H. A. (2011). Muskmelon seed oil: A 
potential non-food oil source for biodiesel production . 
Energy, 5632-5639. 

[30] Vanesa Y. Ixtainab, A. V. (2010). Supercritical carbon 
dioxide extraction of oil from Mexican chia seed: 
Characterization and process optimization. The 
Journal of Supercritical Fluids, 192-199. 



SAKINAH BINTI KHAIDZIR (EH220) 

  

6 

[31] William, J. (2007). The Origin of the Soxhlet 
Extractor. Journal of Chemical Education, 1913-1914. 

[32] Yansong, H. M.-h. (2007). Characteristics of Some 
Nutritional Compositions of Melon Seeds. 
International Journal of Food Science And 
Technology, 1397-1401. 

[33] Yener, S. G. (2016). Supercritical carbon dioxide 
extraction of flaxseed oil: Effect of extraction 
parameters and mass transfer modeling. The Journal of 
Supercritical Fluids, 76-80. 

[34] Yilmaz, N. A. (2014). A shrinking core model and 
empirical kinetic approaches in supercritical carbon 
dioxide extraction of safflower seed oil. The Journal of 
Supercritical Fluids, 81-90. 

[35] Yuan Gao, R.-L. C.-L. (2011). Pharmacological basis 
for medicinal use of muskmelon base for abdominal 
distention and constipation. Journal of 
Ethnopharmacology, 129-135. 

[36] Zermane Ahmed, M. A.-H. (2012). Extraction and 
Modeling of Algerian Rosemary essential oil using 
Supercritical Carbon Dioxide: Effect of pressure and 
temperature. Energy Procedia, 1038-1046. 

[37] Zuraida Muhammad, Z. M. (2013). Steam Distillation 
With Induction Heating System: Analysis of kaffir 
lime oil compound and production yield at various 
temperatures. The Malayan Journal of Analytical 
Sciences, 340-347. 

 


	Abstract— From a secondary supercritical extraction data of muskmelon seed which was obtained from the work done by J. Prakash Maran and B. Priya, a suitable mathematical model was found for the oil yield extracted. The reason this study was done is t...
	I. INTRODUCTION
	II. METHODOLOGY
	1. Artificial Neural Network modeling
	2. Finding the most suitable number of neuron to be trained

	III. RESULTS AND DISCUSSION
	1. Regression plot and error histogram of network
	2. Model adequacy
	3. Effect of parameters

	IV. Conclusion
	Acknowledgment


