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Abstract—This paper present a protein sequence alignment 

accelerated with Graphics Processing Units (GPUs). In 

bioinformatics, alignments are commonly performed in genome 

and protein sequence analysis for gene identification and 

evolutionary similarities. For such analysis, there are a few 

approaches, every single different in accuracy and computational 

difficulty. Smith-waterman (SW) considered as the greatest 

algorithm for its accuracy in same scoring. In the other hand, it is 

not suitable to be used by life scientists as it is experience executions 

time on general purposed. Through this paper we focus on Smith-

Waterman to discover the construction features of Graphic 

Processing Units (GPUs) and determine the difficulties in the 

hardware construction as well as the software improvements 

needed to put on the program construction on the GPU. In 

comparison with the state-of-the-art implementation on an 

NVIDIA Geforce 610M graphics card, our implementation reports 

a 1.9 times performance improvement in terms of execution time. 

Index Terms—Graphic Processing Unit (GPU), Smith-

Waterman Algorithm (SW), Compute Device Unified Architecture 

(CUDA), Protein Sequence Alignment 

I. INTRODUCTION 

In the era of advance technology, people desire new and very 

powerful chip in their graphic hardware. Graphic processing unit 

are called as GPUs is increasing rapidly in the last few years. The 

usually used of graphic processing unit (GPUs) are to accelerate 

the graphic rendering. There several rule for graphic processing 

unit (GPUs) such as it is massive parallel. It means the 

computations can be broken down into hundreds or thousands of 

independent units of work. The best performance when all of the 

cores are kept busy, exploiting the inherent parallel nature of the 

graphic processing unit (GPUs). Seemingly simple, vectored 

MATLAB calculations on arrays with hundreds of thousands of 

elements often can fit into this category. Second, it is 

computational intensive. It means the time spent on computation 

significantly exceeds the time spent on transferring data to and 

from GPU memory. Because a GPU is attached to the host CPU 

via the PCI Express bus, the memory access is slower than with 

a traditional CPU. This means that your overall computational 

speedup is limited by the amount of data transfer that occurs in 

your algorithm.   

Smith-Waterman (S-W) algorithm is an optimal sequence 

alignment method for biological databases, but its computational 

complexity makes it too slow for practical purposes. Heuristics 

based approximate methods like Fasta and Blast provide faster 

solutions but at the cost of reduced accuracy. Also, the expanding 

volume and varying lengths of sequences necessitate 

performance efficient restructuring of these databases. Thus to 

come up with an accurate and fast solution, it is highly desired to 

speed up the S-W algorithm. Result is an improved performance 

which is better than the fastest available GPU implementation. 

 

 
Fig 1: Comparison the number of cores of CPU type and GPU 

 

At first, before graphic processing unit (GPUs) are used in 

computing, we are used Multicore machines and hyper-

threading technology. These have enabled scientists, engineers, 

and financial analysts to speed up computationally intensive 

applications in a numerous of disciplines. Today, next type of 

hardware gives even higher computational performance, which 

is the graphics processing unit (GPUs). 

The SW algorithm, besides being the most sensitive for 

searching protein databases for sequence similarities, is also the 

most time consuming  [2, 3, 4]. A protein database is a database 

containing protein sequences with known functionality. SW 

provides a score of similarity between two sequences [5]. This 

similarity score is sometimes referred to as the SW score. 

Instead of looking at an entire sequence at once, the S-W 

algorithm compares multi-lengthed segments, looking for 

whichever segment maximizes the scoring measure. The 

algorithm itself is recursive in nature [100]: 

 

         H i-1, j-1 + s(a i, b j);   

H i j = max              H i-k, j - W k;                          (1) 

                               H i, j-1 - W 1;                            

         0;                            

 

Almost all desktops and servers currently manufactured have 

GPUs in addition to having multiple CPU cores. The presence of 

heterogeneous cores (CPU cores and GPU cores) on these 
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machines further complicates the task of programming them. 

Several frameworks have been designed to allow developers to 

write programs for these heterogeneous machines. The following 

section discusses some of these. 

NVIDIA CUDA is an extension of the C++ programming 

language. It extends the base C++ language to provide data 

parallel constructs to write code that is to run on the GPU[6]. 

Programs written in CUDA have two distinct parts – the part of 

the program written in base C++ which is to execute on the host 

processor and code written using the CUDA language extensions 

that is to execute on the device (GPU). The CUDA toolkit 

provides a compiler, nvcc, to compile CUDA programs into 

executable. When the resulting executable is run, it starts 

executing on the CPU and then initiates required DMA transfers 

and GPU kernel executions.  

From the figure 2, it show the CUDA hierarchy of threads 

block and grids. From our PC we can use CUDA software to 

program the GPU. There are multiprocessor in the GPU that will 

execute several of threads block. One multiprocessor can be run 

by multiple threads block, or in parallel threads block using 

threads switching. CUDA cores are the processing elements 

within a multiprocessor in group of 32 called warps

 
Fig 2: Programming model. CUDA hierarchy of threads, 

blocks and grids.[5] 

 

On the GPU, a hierarchy of memory architecture is available 

for the programmer to utilize. As provided by the CUDA 

programming guide, these include Registers: Read-Write per-

thread  

 

• Local Memory: Read-write per –thread 

• Shared Memory: Read-write per-block 

• Global Memory: Read-write per-grid 

• Constant Memory: Read-only per-grid 

• Texture Memory: Read-only per-grid 

 

Figure 3 show that CUDA memory hierarchy that consist of 

host (PC), global memory, texture cache, constant cache, and 

block where the block consists several parts. Global memory in 

the figure 2 is the GPUs RAM. Then the constants cache which 

is a read-only portion of global memory. It caches at each 

multiprocessor and accessing it is as fast as accessing a register 

[5]. The other types of memories are shared memory and local 

memory, where shared memory is a fast memory used for inter-

thread communication within a thread block and local memory is 

a per thread portion of the global memory used for function calls 

and register spills. Additionally, each multiprocessor offers a 

bank of registers, shared between its processors [5] 

 

  
 

Fig 3: Memory model. CUDA memory hierarchy.[5] 

 

II. METHODOLOGY 

 

A. General design 

 

NVIDIA Compute Unified Device Architecture (CUDA) [12] 

is implement for the GPU programming (device code) in 

combination with C++ for the PC programming (host code) as 

CUDA exists as the advance GPU programming currently 

similar to other present GPU applications protein arrangement 

from the Swiss Prot database [6] are counted for arrangement 

because the structure of protein arrangement is complicated 

compared to DNA. The explanations of the application is 

described in figure 4. The host code regularly taking into 

consideration with loading data structures, copying them to GPU 

and copying back, at the showing the outcome. The query 

arrangement, improved database and other data are copied to the 

GPU. SW algorithm is used to blast off the device code, to align 

with the database sequence. Throughout, the number of such 

arrangement are too small as about 20 top scoring arrangement 

are returned, where about more than 500,000 from Swiss Prot 

database. 

Every processing component in our application is considered 

to self-generate a full alignment between a queries arrangement 

and database arrangement. Efficient resource utilization is the 

sequence of the exclusion of the need for inter processor 

communication. It is conservable to keep all processor well 

filled as the GPU used for application contain 48 processors 

cores, while the newest Swiss Prot has more than 500,000 

arrangement [7].  
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Fig 4: Description of GPU implement. 

 

B. Database Organization 

 

Names and other biological info are the part of sequences 

description of the Swiss Prot database which being monitored 

through Fasta Format. In addition, the GPU implementation 

turns them to a standard GPU format which suits the ability of 

the device [5]. The database is also directly converted into Fasta 

Format and saved in the new format. It just required to be 

converted once. Figure 5 shows the conversion process. 

1) Arrangement: A thread is a basic element of the CUDA 

programming model which perform an example of the code. 

Asset of thread which perform a CUDA programming in 

parallel; where it has admission to registers and per thread 

memory [8]. Warps is the GPU processors which perform 

threads in group of 3D operation on GT200-class. GPU’s  can 

be enhanced a great deal by having threads in half-warp (16 

threads) performed the similar code path and access memory in 

a hear vicinity threads of half warp cannot perform their task, 

individually as it has to wait for each other to finish. Database 

sequences are arranged by length to reduce length dissimilarities 

between nearby threads as shown in figure 5(b) which may 

minimize the waiting time. Description of the sequence are 

located in isolated file which is being not uploaded to the GPU, 

which conserve memory and reduce load time. In addition, 

sequence character are change with numeric indexes to assist 

simpler substitution matrix lookup. 

2) Concatenation: Groups of 16 sequences are processed after 

being taken in sequence sets which considering half-warp of 

threads functioning for them such showed in Figure 5(c), after 

arrangements. Numerous sequence sets still have various sizes, 

even though through arrangement by length has somewhat 

balanced task inside a sequence set are concatenated with 

discarded sequences to shape sequence group. The largest 

sequence in the sets are almost like same with the total length of 

each sequence groups. This cause in equivalent task for each 

thread in a half-warp processing a sequence set. In between the 

concatenated sequences, sequence terminators are placed; which 

may inform GPU kernel to perform new arrangement. The 

threads will wait for the other threads in the half-warp to perform 

accomplishment as the terminator are implant at each end of the 

sequence group, indicating the end of group concatenated.  

 
 

Fig 5: The Database conversion process. 

 

3) Interlacing: As all the database arrangement have been 

processed into 16-wide sets of arrangement groups they are 

marked to five. The arrangement sets are marked in an 

interlinking subsets contains of 8 characters from every 

arrangement group. 

 

  
Fig 6: Sequence storing as interlaced subsets 

 

C. Temporary data reads and writes 

While developing the GPU implementation, the memory 

bandwidth represented a serious bottleneck. A number of steps 

have been taken to optimize for high performance by reducing 

the number of memory accesses, the frequent temporary data 
accesses in particular. As no traceback is performed on the GPU, 

S-W matrix values do not need to be saved for the entire 

execution time and can be overwritten. As such, only a single 

column of S-W scores is kept. This score column stores values 

to the left of the currently processing column, i.e. Hi-1,1≤j≤N in 

Equation 1. The size of this temporary data column is set based 

on the size of the query sequence, not the database sequence, so 

that the column can have one fixed size for all database 

sequences. This usually requires less memory, as it is unlikely 

that the query sequence will be as long as the longest database 

sequence. The temporary data column is set to zero whenever a 
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new database sequence is started. In addition to this temporary 

score column, variables are used to keep the values of the upper 

and upper-left cells required by the algorithm, i.e. Hi,j-1 and Hi-

1,j-1 in Equation 1. To support affine gap penalties, another 
temporary data column is added for D values. Additionally, an 

upper E value is kept (see Equation 1).  
Each S-W iteration involves reading and writing two 

temporary values (score and D), for four accesses in total. When 

both are non-coalesced, 32 byte reads/writes are issued for each 

access. This means that per half-warp 16 threads × 32 bytes × 
2 values × 2 read/write = 2048 bytes of bandwidth is used, 

resulting in a major memory bottleneck. The optimization steps 

mentioned below decrease this to one 128-byte coalesced read 

and write for every second iteration. This is a 16 times 

bandwidth improvement and requires only 1 instead of 64 

accesses. 128 bytes is the largest allowed coalesced access size, 

and is faster than multiple smaller coalesced accesses. The 

optimizations are as follows: 

 Smaller, 16-bit data type for the temporary values, cutting 

the theoretically required bandwidth in half and allowing 

for better coalescing.  

 Each thread stores only one data value in turn, resulting in 

an interlaced storage scheme. Instead of direct array 

accesses, a pointer into the temporary storage is started at 

the thread id, and increased by the total number of threads 

to move to the next element of the S-W H matrix. Each 

thread in a half-warp then reads a 2-byte coalesced value, 

meaning that instead of two 32-byte accesses per thread, 

two such accesses take place per half-warp. This sixteen 

times bandwidth improvement results in an almost ten 

times net speedup. 

 To halve the number of memory accesses, the temporary 

score and D values are interlaced. This is done by defining 

a data structure consisting of these values and using it to 

access the score and D values for an iteration in one go. At 

this point, a thread accesses two 2-byte values in one read, 

for a total of 16 ×2 ×2 bytes bandwidth per half warp. The 

result is a 64-byte coalesced access. 

 Finally, two temporary values are interlaced to move to 

128-byte accesses. This has an additional benefit of 

temporary reads/writes only being required for every 

second query sequence symbol processed. 

 

D. Substitution matrix accesses 

 

To align the proteins, we need to use a substitution matrix, 

which is accessed every time two symbols are aligned, making 

its access time critical to the implementation’s performance. 

Substitution matrix (e.g. BLOSUM 62) accesses are random and 

are completely dependent on the database sequence, 

complicating the choice of memory used. GPU’s Global 

memory is not a good choice for such a frequent usage due to its 

high access time. Also the random nature of substitution matrix 

accesses makes coalescing very difficult. As an alternative, the 

substitution matrix is stored in texture memory. Texture memory 

is a cached window into global memory that offers lower latency 

and does not require coalescing for best performance. It is thus 

well suited for random access. Texture memory has the ability 

to fetch four values at a time. This mechanism can be used to 

fetch four substitution matrix values from a query profile. A 

query profile is shown in Figure 7. It is a type of substitution 

matrix where, instead of the protein alphabet, the query 

sequence is used along the top row. This means that for a given 

database character, the substitution matrix is not random 

anymore: multiple substitution scores can be loaded 

simultaneously when aligning the query with a database 

character. Furthermore, query sequence lookups are not required 

anymore; only the current position within the query is needed to 

index into the profile. A query profile is generated once for every 

query sequence. Each query profile column stores values for 23 

characters. The number of columns and hence the memory 

requirement for a query profile depends on the length of the 

query sequence. The GeForce 6100M GPU used for our 

implementation has 16KB of texture cache per multiprocessor. 

This means that a query sequence having more than ⌊16 × 

1024/23⌋ = 712.35 characters will result in increased cache 

misses, as described in [14]. Tests were performed to quantify 

the texture cache miss rate, which was shown to be very low. 

For example, aligning an 8000 character query sequence 

resulted in 0.009% miss rate. For smaller sequences, the miss 

rate was reported to be even lower. Using this query profile 

method resulted in a 17% performance improvement with 

Swiss-Prot. 

 

 
Fig 7: Query profile 

 

III. RESULTS AND DISCUSSIONS 

We have tested graphic algorithm SW on an Asus A55V 

series running on Window 7 Premium. The computer 

specification as below: 

 Intel Core i5 – 3210M, 2.5GHz 

 4 GB DDR3 1600 MHz SDRAM 

 NVIDIA® GeForce® 610M with 2GB DDR3 

VRAM 

 Swiss-Prot release October 16, 2013 

 CUDA toolkit version 3.1 

 Substitution matrix BLOSUM 62 

 Gap penalty: -10 and gap extend penalty: -2 (these 

do not influence the execution time though) 

The amount of processor and RAM contain in our systems 

are irrelevant, this is because all SW calculations are performed 

strictly on the GPU and these are the calculations that we have 
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clocked. We have provided the computers configuration simply 

for an information purposes. It does not have an effect on how 

the GeForce 610M performs its calculations. 

TABLE I: EXECUTION TIME OF BLAST, SSEARCH AND GASW  

FOR THE PROTEIN. RATIO IS BETWEEN EXECUTION TIME FOR 

SSEARCH AND GASW. 

 

  Execution Time  
Query 

Sequence Length BLAST SSEARCH Gasw Ratio 

P02232 144 25.00 7.03 3.24 2.17 

P05013 189 34.40 7.11 3.46 2.05 

P14942 222 34.80 8.61 4.30 2.00 

P07327 375 35.00 11.12 4.97 2.24 

P01008 464 45.40 11.31 5.80 1.95 

P03435 567 85.80 12.37 7.08 1.75 

P27895 1000 106.10 16.14 11.07 1.46 

P07756 1500 115.20 21.38 15.99 1.34 

P04775 2005 116.30 25.01 20.60 1.21 

P19096 2504 127.30 31.35 28.03 1.12 

P28167 3005 165.20 33.60 28.70 1.17 

P0C6B8 3564 196.90 37.42 34.01 1.10 

P20930 4061 297.60 40.71 37.98 1.07 

Q9UKN1  5478 524.40 60.17 51.02 1.18 

 

From table 1, we can see the execution time for the Blast, 

Ssearch and Gasw program. From this result, we known that 

execution time for Blast program is slow running than other. This 

is because the Blast program compares protein sequences to 

sequence databases and calculates the statistical significance of 

matches. Blast can be used to infer functional and evolutionary 

relationships between sequences as well as help identify 

members of gene families [13]. Blast is the heuristics based and 

it is fast but it do not guaranty optimal alignment sequence. 

For Ssearch, it also like as Blast program that was heuristics 

based and it is fast but do not guaranty optimal alignment 

sequence. Ssearch (SSE2) is an accelerated and multi-threaded 

version of ssearch, where ssearch is a CPU-based S-W alignment 

tool that can be found in the Fasta suite of applications [10]. The 

SSE2 optimizations, described in [14] utilize modern CPU’s 

vector extensions for a performance increase. The result was 

showed Ssearch is faster than Blast program, but it is still slower 

than Gasw program. 

From the result in table 1, it was observed that Gasw is better 

than Blast and Ssearch on running the protein sequence 

alignment. The execution times of Gasw is about 2 times faster 

than Ssearch when it running on 144 length of protein query 

sequence. However, after the length of protein reached about 

1000 the gap difference of execution time between Ssearch and 

Gasw became narrowed. But, the execution time of Gasw still 

faster than Ssearch. We can see it on figure 9.  

 
  

Fig 8: Graph for execution time for Gasw, Ssearch and Blast. 

 

 
 

Fig 9: Graph for execution time between Gasw and Ssearch 

 

 
Fig 10: Graph for ratio between Gasw and Ssearch 

 

From figure 10, the ratio shows that Gasw program that had 

been implement on GPU is faster about 1.9 faster than Ssearch at 

the length sequence less that 1000 sequence. After length 1000 
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sequence the ratio goes down from 1.5 to 1.1. From this result we 

have found that the GPU architecture has issues that can have a 

negative impact on the execution of certain algorithms. A single 

multiprocessor contains 16KB of shared memory and 8,192 

registers. Let’s say, for example, the kernel is running 768 

threads per multi-processor. Then there will only be roughly 21 

bytes of shared memory and 10 registers available per thread, 

assuming each thread’s data is not dependent on other threads. 

For an algorithm such as Smith-Waterman that uses several 

hundred MB(s) of memory, this means that there must be several 

reads to the global memory in the kernel. Since all the cache 

memory has been used, the proccessor need to access the global 

memory. Thus, the execution time or clock cycle will be longer 

than usual. In this work, we took lower the miss rate of the cache 

memory that also can effect the execution time of the instruction. 

 

IV. CONCLUSION 

 

Through this work we have found that SW can be effectively 

mapped to the GPU architecture using CUDA. We achieve a 1.9 

times faster over the serial method Ssearch. The new 

implementation improves the performance by reducing the 

number of memory accesses and optimizing the database 

organization. The database is organized in equal length sequence 

sets resulting in an equal workload distribution for all the threads 

of each multiprocessor on the GPU. In comparison with the state-

of-the-art implementation on an NVIDIA Geforce 610M 

graphics card, our implementation reports a 1.9 times 

performance improvement in terms of execution time. For 

recommendation we need to use a better GPU to get faster and 

stable for execution purpose such as GPU that consists of large 

number of cores and memory. 
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