
APPENDICE D

42

Protein sequence alignment with GPU: Database

Optimization

Ahmad Faiz Bin Mohd Rahi

Faculty of Electrical Engineering

Universiti Teknologi MARA – (UiTM)

40000 Shah Alam, Selangor, Malaysia

faiztm90@gmail.com

Abstract—This paper present a protein sequence alignment

accelerated with Graphics Processing Units (GPUs). In

bioinformatics, alignments are commonly performed in genome

and protein sequence analysis for gene identification and

evolutionary similarities. For such analysis, there are a few

approaches, every single different in accuracy and computational

difficulty. Smith-waterman (SW) considered as the greatest

algorithm for its accuracy in same scoring. In the other hand, it is

not suitable to be used by life scientists as it is experience executions

time on general purposed. Through this paper we focus on Smith-

Waterman to discover the construction features of Graphic

Processing Units (GPUs) and determine the difficulties in the

hardware construction as well as the software improvements

needed to put on the program construction on the GPU. In

comparison with the state-of-the-art implementation on an

NVIDIA Geforce 610M graphics card, our implementation reports

a 1.9 times performance improvement in terms of execution time.

Index Terms—Graphic Processing Unit (GPU), Smith-

Waterman Algorithm (SW), Compute Device Unified Architecture

(CUDA), Protein Sequence Alignment

I. INTRODUCTION

In the era of advance technology, people desire new and very

powerful chip in their graphic hardware. Graphic processing unit

are called as GPUs is increasing rapidly in the last few years. The

usually used of graphic processing unit (GPUs) are to accelerate

the graphic rendering. There several rule for graphic processing

unit (GPUs) such as it is massive parallel. It means the

computations can be broken down into hundreds or thousands of

independent units of work. The best performance when all of the

cores are kept busy, exploiting the inherent parallel nature of the

graphic processing unit (GPUs). Seemingly simple, vectored

MATLAB calculations on arrays with hundreds of thousands of

elements often can fit into this category. Second, it is

computational intensive. It means the time spent on computation

significantly exceeds the time spent on transferring data to and

from GPU memory. Because a GPU is attached to the host CPU

via the PCI Express bus, the memory access is slower than with

a traditional CPU. This means that your overall computational

speedup is limited by the amount of data transfer that occurs in

your algorithm.

Smith-Waterman (S-W) algorithm is an optimal sequence

alignment method for biological databases, but its computational

complexity makes it too slow for practical purposes. Heuristics

based approximate methods like Fasta and Blast provide faster

solutions but at the cost of reduced accuracy. Also, the expanding

volume and varying lengths of sequences necessitate

performance efficient restructuring of these databases. Thus to

come up with an accurate and fast solution, it is highly desired to

speed up the S-W algorithm. Result is an improved performance

which is better than the fastest available GPU implementation.

Fig 1: Comparison the number of cores of CPU type and GPU

At first, before graphic processing unit (GPUs) are used in

computing, we are used Multicore machines and hyper-

threading technology. These have enabled scientists, engineers,

and financial analysts to speed up computationally intensive

applications in a numerous of disciplines. Today, next type of

hardware gives even higher computational performance, which

is the graphics processing unit (GPUs).

The SW algorithm, besides being the most sensitive for

searching protein databases for sequence similarities, is also the

most time consuming [2, 3, 4]. A protein database is a database

containing protein sequences with known functionality. SW

provides a score of similarity between two sequences [5]. This

similarity score is sometimes referred to as the SW score.

Instead of looking at an entire sequence at once, the S-W

algorithm compares multi-lengthed segments, looking for

whichever segment maximizes the scoring measure. The

algorithm itself is recursive in nature [100]:

 H i-1, j-1 + s(a i, b j);

H i j = max H i-k, j - W k; (1)

 H i, j-1 - W 1;

 0;

Almost all desktops and servers currently manufactured have

GPUs in addition to having multiple CPU cores. The presence of

heterogeneous cores (CPU cores and GPU cores) on these

mailto:faiztm90@gmail.com

APPENDICE D

43

machines further complicates the task of programming them.

Several frameworks have been designed to allow developers to

write programs for these heterogeneous machines. The following

section discusses some of these.

NVIDIA CUDA is an extension of the C++ programming

language. It extends the base C++ language to provide data

parallel constructs to write code that is to run on the GPU[6].

Programs written in CUDA have two distinct parts – the part of

the program written in base C++ which is to execute on the host

processor and code written using the CUDA language extensions

that is to execute on the device (GPU). The CUDA toolkit

provides a compiler, nvcc, to compile CUDA programs into

executable. When the resulting executable is run, it starts

executing on the CPU and then initiates required DMA transfers

and GPU kernel executions.

From the figure 2, it show the CUDA hierarchy of threads

block and grids. From our PC we can use CUDA software to

program the GPU. There are multiprocessor in the GPU that will

execute several of threads block. One multiprocessor can be run

by multiple threads block, or in parallel threads block using

threads switching. CUDA cores are the processing elements

within a multiprocessor in group of 32 called warps

Fig 2: Programming model. CUDA hierarchy of threads,

blocks and grids.[5]

On the GPU, a hierarchy of memory architecture is available

for the programmer to utilize. As provided by the CUDA

programming guide, these include Registers: Read-Write per-

thread

• Local Memory: Read-write per –thread

• Shared Memory: Read-write per-block

• Global Memory: Read-write per-grid

• Constant Memory: Read-only per-grid

• Texture Memory: Read-only per-grid

Figure 3 show that CUDA memory hierarchy that consist of

host (PC), global memory, texture cache, constant cache, and

block where the block consists several parts. Global memory in

the figure 2 is the GPUs RAM. Then the constants cache which

is a read-only portion of global memory. It caches at each

multiprocessor and accessing it is as fast as accessing a register

[5]. The other types of memories are shared memory and local

memory, where shared memory is a fast memory used for inter-

thread communication within a thread block and local memory is

a per thread portion of the global memory used for function calls

and register spills. Additionally, each multiprocessor offers a

bank of registers, shared between its processors [5]

Fig 3: Memory model. CUDA memory hierarchy.[5]

II. METHODOLOGY

A. General design

NVIDIA Compute Unified Device Architecture (CUDA) [12]

is implement for the GPU programming (device code) in

combination with C++ for the PC programming (host code) as

CUDA exists as the advance GPU programming currently

similar to other present GPU applications protein arrangement

from the Swiss Prot database [6] are counted for arrangement

because the structure of protein arrangement is complicated

compared to DNA. The explanations of the application is

described in figure 4. The host code regularly taking into

consideration with loading data structures, copying them to GPU

and copying back, at the showing the outcome. The query

arrangement, improved database and other data are copied to the

GPU. SW algorithm is used to blast off the device code, to align

with the database sequence. Throughout, the number of such

arrangement are too small as about 20 top scoring arrangement

are returned, where about more than 500,000 from Swiss Prot

database.

Every processing component in our application is considered

to self-generate a full alignment between a queries arrangement

and database arrangement. Efficient resource utilization is the

sequence of the exclusion of the need for inter processor

communication. It is conservable to keep all processor well

filled as the GPU used for application contain 48 processors

cores, while the newest Swiss Prot has more than 500,000

arrangement [7].

APPENDICE D

44

Fig 4: Description of GPU implement.

B. Database Organization

Names and other biological info are the part of sequences

description of the Swiss Prot database which being monitored

through Fasta Format. In addition, the GPU implementation

turns them to a standard GPU format which suits the ability of

the device [5]. The database is also directly converted into Fasta

Format and saved in the new format. It just required to be

converted once. Figure 5 shows the conversion process.

1) Arrangement: A thread is a basic element of the CUDA

programming model which perform an example of the code.

Asset of thread which perform a CUDA programming in

parallel; where it has admission to registers and per thread

memory [8]. Warps is the GPU processors which perform

threads in group of 3D operation on GT200-class. GPU’s can

be enhanced a great deal by having threads in half-warp (16

threads) performed the similar code path and access memory in

a hear vicinity threads of half warp cannot perform their task,

individually as it has to wait for each other to finish. Database

sequences are arranged by length to reduce length dissimilarities

between nearby threads as shown in figure 5(b) which may

minimize the waiting time. Description of the sequence are

located in isolated file which is being not uploaded to the GPU,

which conserve memory and reduce load time. In addition,

sequence character are change with numeric indexes to assist

simpler substitution matrix lookup.

2) Concatenation: Groups of 16 sequences are processed after

being taken in sequence sets which considering half-warp of

threads functioning for them such showed in Figure 5(c), after

arrangements. Numerous sequence sets still have various sizes,

even though through arrangement by length has somewhat

balanced task inside a sequence set are concatenated with

discarded sequences to shape sequence group. The largest

sequence in the sets are almost like same with the total length of

each sequence groups. This cause in equivalent task for each

thread in a half-warp processing a sequence set. In between the

concatenated sequences, sequence terminators are placed; which

may inform GPU kernel to perform new arrangement. The

threads will wait for the other threads in the half-warp to perform

accomplishment as the terminator are implant at each end of the

sequence group, indicating the end of group concatenated.

Fig 5: The Database conversion process.

3) Interlacing: As all the database arrangement have been

processed into 16-wide sets of arrangement groups they are

marked to five. The arrangement sets are marked in an

interlinking subsets contains of 8 characters from every

arrangement group.

Fig 6: Sequence storing as interlaced subsets

C. Temporary data reads and writes

While developing the GPU implementation, the memory

bandwidth represented a serious bottleneck. A number of steps

have been taken to optimize for high performance by reducing

the number of memory accesses, the frequent temporary data
accesses in particular. As no traceback is performed on the GPU,

S-W matrix values do not need to be saved for the entire

execution time and can be overwritten. As such, only a single

column of S-W scores is kept. This score column stores values

to the left of the currently processing column, i.e. Hi-1,1≤j≤N in

Equation 1. The size of this temporary data column is set based

on the size of the query sequence, not the database sequence, so

that the column can have one fixed size for all database

sequences. This usually requires less memory, as it is unlikely

that the query sequence will be as long as the longest database

sequence. The temporary data column is set to zero whenever a

APPENDICE D

45

new database sequence is started. In addition to this temporary

score column, variables are used to keep the values of the upper

and upper-left cells required by the algorithm, i.e. Hi,j-1 and Hi-

1,j-1 in Equation 1. To support affine gap penalties, another
temporary data column is added for D values. Additionally, an

upper E value is kept (see Equation 1).
Each S-W iteration involves reading and writing two

temporary values (score and D), for four accesses in total. When

both are non-coalesced, 32 byte reads/writes are issued for each

access. This means that per half-warp 16 threads × 32 bytes ×
2 values × 2 read/write = 2048 bytes of bandwidth is used,

resulting in a major memory bottleneck. The optimization steps

mentioned below decrease this to one 128-byte coalesced read

and write for every second iteration. This is a 16 times

bandwidth improvement and requires only 1 instead of 64

accesses. 128 bytes is the largest allowed coalesced access size,

and is faster than multiple smaller coalesced accesses. The

optimizations are as follows:

 Smaller, 16-bit data type for the temporary values, cutting

the theoretically required bandwidth in half and allowing

for better coalescing.

 Each thread stores only one data value in turn, resulting in

an interlaced storage scheme. Instead of direct array

accesses, a pointer into the temporary storage is started at

the thread id, and increased by the total number of threads

to move to the next element of the S-W H matrix. Each

thread in a half-warp then reads a 2-byte coalesced value,

meaning that instead of two 32-byte accesses per thread,

two such accesses take place per half-warp. This sixteen

times bandwidth improvement results in an almost ten

times net speedup.

 To halve the number of memory accesses, the temporary

score and D values are interlaced. This is done by defining

a data structure consisting of these values and using it to

access the score and D values for an iteration in one go. At

this point, a thread accesses two 2-byte values in one read,

for a total of 16 ×2 ×2 bytes bandwidth per half warp. The

result is a 64-byte coalesced access.

 Finally, two temporary values are interlaced to move to

128-byte accesses. This has an additional benefit of

temporary reads/writes only being required for every

second query sequence symbol processed.

D. Substitution matrix accesses

To align the proteins, we need to use a substitution matrix,

which is accessed every time two symbols are aligned, making

its access time critical to the implementation’s performance.

Substitution matrix (e.g. BLOSUM 62) accesses are random and

are completely dependent on the database sequence,

complicating the choice of memory used. GPU’s Global

memory is not a good choice for such a frequent usage due to its

high access time. Also the random nature of substitution matrix

accesses makes coalescing very difficult. As an alternative, the

substitution matrix is stored in texture memory. Texture memory

is a cached window into global memory that offers lower latency

and does not require coalescing for best performance. It is thus

well suited for random access. Texture memory has the ability

to fetch four values at a time. This mechanism can be used to

fetch four substitution matrix values from a query profile. A

query profile is shown in Figure 7. It is a type of substitution

matrix where, instead of the protein alphabet, the query

sequence is used along the top row. This means that for a given

database character, the substitution matrix is not random

anymore: multiple substitution scores can be loaded

simultaneously when aligning the query with a database

character. Furthermore, query sequence lookups are not required

anymore; only the current position within the query is needed to

index into the profile. A query profile is generated once for every

query sequence. Each query profile column stores values for 23

characters. The number of columns and hence the memory

requirement for a query profile depends on the length of the

query sequence. The GeForce 6100M GPU used for our

implementation has 16KB of texture cache per multiprocessor.

This means that a query sequence having more than ⌊16 ×

1024/23⌋ = 712.35 characters will result in increased cache

misses, as described in [14]. Tests were performed to quantify

the texture cache miss rate, which was shown to be very low.

For example, aligning an 8000 character query sequence

resulted in 0.009% miss rate. For smaller sequences, the miss

rate was reported to be even lower. Using this query profile

method resulted in a 17% performance improvement with

Swiss-Prot.

Fig 7: Query profile

III. RESULTS AND DISCUSSIONS

We have tested graphic algorithm SW on an Asus A55V

series running on Window 7 Premium. The computer

specification as below:

 Intel Core i5 – 3210M, 2.5GHz

 4 GB DDR3 1600 MHz SDRAM

 NVIDIA® GeForce® 610M with 2GB DDR3

VRAM

 Swiss-Prot release October 16, 2013

 CUDA toolkit version 3.1

 Substitution matrix BLOSUM 62

 Gap penalty: -10 and gap extend penalty: -2 (these

do not influence the execution time though)

The amount of processor and RAM contain in our systems

are irrelevant, this is because all SW calculations are performed

strictly on the GPU and these are the calculations that we have

APPENDICE D

46

clocked. We have provided the computers configuration simply

for an information purposes. It does not have an effect on how

the GeForce 610M performs its calculations.

TABLE I: EXECUTION TIME OF BLAST, SSEARCH AND GASW

FOR THE PROTEIN. RATIO IS BETWEEN EXECUTION TIME FOR

SSEARCH AND GASW.

 Execution Time
Query

Sequence Length BLAST SSEARCH Gasw Ratio

P02232 144 25.00 7.03 3.24 2.17

P05013 189 34.40 7.11 3.46 2.05

P14942 222 34.80 8.61 4.30 2.00

P07327 375 35.00 11.12 4.97 2.24

P01008 464 45.40 11.31 5.80 1.95

P03435 567 85.80 12.37 7.08 1.75

P27895 1000 106.10 16.14 11.07 1.46

P07756 1500 115.20 21.38 15.99 1.34

P04775 2005 116.30 25.01 20.60 1.21

P19096 2504 127.30 31.35 28.03 1.12

P28167 3005 165.20 33.60 28.70 1.17

P0C6B8 3564 196.90 37.42 34.01 1.10

P20930 4061 297.60 40.71 37.98 1.07

Q9UKN1 5478 524.40 60.17 51.02 1.18

From table 1, we can see the execution time for the Blast,

Ssearch and Gasw program. From this result, we known that

execution time for Blast program is slow running than other. This

is because the Blast program compares protein sequences to

sequence databases and calculates the statistical significance of

matches. Blast can be used to infer functional and evolutionary

relationships between sequences as well as help identify

members of gene families [13]. Blast is the heuristics based and

it is fast but it do not guaranty optimal alignment sequence.

For Ssearch, it also like as Blast program that was heuristics

based and it is fast but do not guaranty optimal alignment

sequence. Ssearch (SSE2) is an accelerated and multi-threaded

version of ssearch, where ssearch is a CPU-based S-W alignment

tool that can be found in the Fasta suite of applications [10]. The

SSE2 optimizations, described in [14] utilize modern CPU’s

vector extensions for a performance increase. The result was

showed Ssearch is faster than Blast program, but it is still slower

than Gasw program.

From the result in table 1, it was observed that Gasw is better

than Blast and Ssearch on running the protein sequence

alignment. The execution times of Gasw is about 2 times faster

than Ssearch when it running on 144 length of protein query

sequence. However, after the length of protein reached about

1000 the gap difference of execution time between Ssearch and

Gasw became narrowed. But, the execution time of Gasw still

faster than Ssearch. We can see it on figure 9.

Fig 8: Graph for execution time for Gasw, Ssearch and Blast.

Fig 9: Graph for execution time between Gasw and Ssearch

Fig 10: Graph for ratio between Gasw and Ssearch

From figure 10, the ratio shows that Gasw program that had

been implement on GPU is faster about 1.9 faster than Ssearch at

the length sequence less that 1000 sequence. After length 1000

0.00

100.00

200.00

300.00

400.00

500.00

600.00

0 2000 4000 6000

Ex
e

cu
ti

o
n

s
ti

m
e

Length query sequence

Blast

Ssearch

Gasw

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

0 2000 4000 6000

Ex
e

cu
ti

o
n

s
ti

m
e

 (
s)

Length query sequence

Ssearch

Gasw

0.00

0.50

1.00

1.50

2.00

2.50

0 2000 4000 6000

R
at

io

Length query sequence

Ratio

http://www.uniprot.org/uniprot/P02232
http://www.uniprot.org/uniprot/P05013
http://www.uniprot.org/uniprot/P14942
http://www.uniprot.org/uniprot/P07327
http://www.uniprot.org/uniprot/P01008
http://www.uniprot.org/uniprot/P03435
http://www.uniprot.org/uniprot/P27895
http://www.uniprot.org/uniprot/P07756
http://www.uniprot.org/uniprot/P04775
http://www.uniprot.org/uniprot/P19096
http://www.uniprot.org/uniprot/P28167
http://www.uniprot.org/uniprot/P0C6B8
http://www.uniprot.org/uniprot/P20930
http://www.uniprot.org/uniprot/Q9UKN1

APPENDICE D

47

sequence the ratio goes down from 1.5 to 1.1. From this result we

have found that the GPU architecture has issues that can have a

negative impact on the execution of certain algorithms. A single

multiprocessor contains 16KB of shared memory and 8,192

registers. Let’s say, for example, the kernel is running 768

threads per multi-processor. Then there will only be roughly 21

bytes of shared memory and 10 registers available per thread,

assuming each thread’s data is not dependent on other threads.

For an algorithm such as Smith-Waterman that uses several

hundred MB(s) of memory, this means that there must be several

reads to the global memory in the kernel. Since all the cache

memory has been used, the proccessor need to access the global

memory. Thus, the execution time or clock cycle will be longer

than usual. In this work, we took lower the miss rate of the cache

memory that also can effect the execution time of the instruction.

IV. CONCLUSION

Through this work we have found that SW can be effectively

mapped to the GPU architecture using CUDA. We achieve a 1.9

times faster over the serial method Ssearch. The new

implementation improves the performance by reducing the

number of memory accesses and optimizing the database

organization. The database is organized in equal length sequence

sets resulting in an equal workload distribution for all the threads

of each multiprocessor on the GPU. In comparison with the state-

of-the-art implementation on an NVIDIA Geforce 610M

graphics card, our implementation reports a 1.9 times

performance improvement in terms of execution time. For

recommendation we need to use a better GPU to get faster and

stable for execution purpose such as GPU that consists of large

number of cores and memory.

ACKNOWLEDGEMENT

The author would like to thank Universiti Teknologi MARA

(UiTM) Malaysia, Miss Ili Shairah Abdul Halim, Mr Syed Abdul

Mutalib and Mr. Ahmad Syafiq Abd Suki for all guidance,

support and advice provided to me throughout the final year

project.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

Mathworks Home Page. http://www.mathworks.com/

Manavski, S.S., Valle, G.: Cuda compatible GPU cards as efficient
hardware accelerators for Smith-Waterman sequence alignment. BMC

Bioinformatics 2008, 9(Suppl 2):S10 (2008)

Sanchéz, F., Salamí E., Ramierez, A., Valero, M.: Performance Analysis
of Sequence Alignment Applications. In: Proceedings of the IEEE

International Symposium on Workload Characterization. October. 2006.

pp 51-60. (2006)
Walker, J.M.: The Proteomics Protocols Handbook, Humana Press, pp

504 (2005)

Hasan et al.: DOPA: GPU-based protein alignment using database and
memory access optimizations. BMC Research Notes 2011 4:261

NVIDIA Corporation: NVIDIA CUDA compute unified device

architecture programming guide.
http://www.nvidia.com/object/cuda_develop.html, (2008)

“http://www.uniprot.org”, Universal Protein Resource, October 2010

M.A. Kentie, “Biological Sequence Alignment Using Graphics
Processing Units”, M.Sc. Thesis CE-MS-2010-35, Computer

Engineering Laboratory, Technical University Delft, The Netherlands,
2010.

 NVIDIA Corporation: http://www.nvidia.in/object/cuda-parallel-

computing-in.html
UVA: FASTA program webpage.

http://fasta.bioch.virginia.edu/fasta_www2/fasta_down.shtml (2008)

NCBI: National Center for Biotechnology Information.
http://www.ncbi.nlm.nih.gov/Class/FieldGuide/BLOSUM62.txt. May

2008. (2008)

Fermi TM “NVIDIA’s Next Generation CUDA TM Compute
Architecture”, White paper NVIDIA Corporation, 2009.

BLAST program webpage : http://blast.ncbi.nlm.nih.gov/Blast.cgi

M. Farrar, “Striped Smith-Waterman Speeds Database Searches Six
Times over other SIMD Implementations”, Bioinformatics, vol. 23(2),

pages 156–161, 2007.

http://www.mathworks.com/
http://www.nvidia.in/object/cuda-parallel-computing-in.html
http://www.nvidia.in/object/cuda-parallel-computing-in.html
http://blast.ncbi.nlm.nih.gov/Blast.cgi

