COMPARISON OF B-SPLINE CURVE FITTING OF CUBIC TRIGONOMETRIC B-SPLINE WITH SHAPE PARAMETER AND NON-UNIFORM RATIONAL B-SPLINE

MUHAMMAD FIRDAUS BIN SAIZUL

Thesis submitted in fulfilment of the requirement for the degree of Bachelor of Science Mathematical Modelling and Analytics (Hons.)

College of Computing, Informatics and Mathematics Universiti Teknologi MARA

February 2025

ABSTRACT

B-splines are commonly used functions in geometrical design. Their ability to smoothly approximate curves with various methods makes them highly valuable in shape design. This paper aims to compare cubic trigonometric B-splines (CTBS) and non-uniform rational B-splines (NURBS) in curve design. Using Wolfram Mathematica, this research begins by implementing both methods on various test objects with simple curves and a limited number of control points. Then, the comparison of shape parameters (for CTBS) and weights (for NURBS) was made to determine which best define the curve shape which shows that $\lambda = 0.1$ and w = 10 resulted the smoothest curve for CTBS and NURBS respectively. Next, the shape parameters for CTBS and weights for NURBS are utilized to design more complex objects with a larger number of control points which is Keris with 118 control points and 39 curves. The comparison of the performance of both methods was made using mean squared error (MSE), a statistical measurement to quantify the error between the desired curve and the generated curve which resulted that the NURBS curve's MSE is lower than CTBS curve's MSE. Furthermore, this study develops interactive applications using Wolfram Mathematica for both CTBS and NURBS. These applications demonstrate the flexibility and applicability of each curve type to users. This study concludes by analyzing the smoothness of the curves generated by both CTBS and NURBS, as well as the accuracy of their error terms.

ACKNOWLEDGEMENT

In the name of Allah, Most Gracious, Most Merciful. Praise to be to Allah, the Cherisher and Sustainer of the world. Foremost, I would like to thank Madam Nursyazni Binti Mohamad Sukri for her valuable guidance, continuous support, and constructive criticisms during the process of carrying out the research and preparing this thesis. Her knowledge and motivation have been major contributors to the development of this work. I would like to extend my heartfelt gratitude to Dr. Nur Atikah, my lecturer for the subject MSP660, for her outstanding teaching and academic leadership, which have significantly enhanced my knowledge in spline theory and computer-aided design techniques. In addition, I would like to extend my gratitude to the facilitation provided by the staff of Universiti Teknologi Mara, which has allowed me to further my studies. I am thankful to my colleagues and friends who have supported me throughout this academic pursuit with their encouragement and discussions. Their experience and friendship have added value to this work. I would also like to thank all those who have directly or indirectly contributed to this research effort. Last but not least, I nostalgically remember the regular motivation and unrelenting support given to me by my family.

TABLE OF CONTENT

Page

DECLA	RATION BY THE SUPERVISOR	i
DECLA	RATION BY THE CANDIDATE	ii
ABSTR	ACT	iii
ACKNO	WLEDGEMENT	iv
TABLE	OF CONTENT	V
LIST OF	F TABLES	viii
LIST OF	F FIGURES	ix
INTROI	DUCTION OF RESEARCH	11
1.1	Introduction	11
1.2	Background of study	11
1.3	Problem Statement	14
1.4	Objectives	15
1.5	Significance of Project	15
1.6	Scope of Project	16
1.7	Project Benefit	18
1.8	Definition of Terms and Concept	20
1.9	Organization of Report	21
LITERA	TURE REVIEW	22
2.1	Introduction	22
2.2	Cubic Trigonometric B-Spline	22

	2.3	Non-Uniform Rational B-Spline	25	
	2.4	Conclusion	27	
Μ	ETHO	DOLOGY	28	
	3.1	Introduction	28	
	3.2	Cubic Trigonometric B-Spline (CTBS) Method	28	
	3.2.1	Properties of Cubic Trigonometric B-Spline (CTBS)	30	
	3.2.2	Shape Parameter of Cubic Trigonometric B-Spline (CTBS)	31	
	3.3	Non-Uniform Rational B-Spline (NURBS) Method	32	
	3.3.1	Properties of Non-Uniform Rational B-Spline (NURBS) Method	33	
	3.3.2	Weight of Non-Uniform Rational B-Spline (NURBS) Method	34	
	3.4	Interactive Application in Wolfram Mathematica	38	
	3.5	Conclusion	43	
IMPLEMENTATION44				
	4.1	Introduction	44	
	4.2	Researcher Step	44	
	4.3	Conclusion	62	
R	ESULT	AND DISCUSSION	63	
	5.1	Introduction	63	
	5.2	Result and Analysis	63	
	5.2.1	Analysis of CTBS curve of test objects	64	
	5.2.2	Analysis of NURBS curve of test objects	71	