UNIVERSITI TEKNOLOGI MARA

EXTRACTION OF POLYPHENOLS FROM CLINACANTHUS NUTANS LINDAU MEDICINAL PLANT USING SOLVENT-FREE MICROWAVE EXTRACTION (SFME)

MOHAMAD AZRUL SOFI BIN MOHD TAHAR

Thesis submitted in fulfilment of the requirements for the degree of **Bachelor of Engineering (hons.)**Chemical and Process

Faculty of Chemical Engineering, Chemical Engineering

December 2017

ACKNOWLEDGEMENT

First and foremost, I am thanked to God for the opportunity that given to me in pursuing on my Bachelor and successful completed the journey which challenging and interesting. Furthermore, I wish my appreciation and thankful to my supervisor Dr Ana Najwa which very helpful and supportive in assisted me to complete this research project. Not just that, I would like to give my gratitude to the staff of the laboratory for helping me during lab session for providing the facilities, knowledge and assistance, Cik Fairuza, En. Yazid, En Aziz, En. Nazmi, En. Irwan and En Faez.

Not forgot to my colleagues and friends which very helpful and supportive in given me advice to strong against this journey in completing my research project. In short, I am very thankful and happy with my parents for always giving me supportive, advice and pray in order educated me and successfully completed this research project.

ABSTRACT

In general, this research is about the extraction of polyphenols from Clinacanthus nutans Lindau (C. nutans) which used Solvent-Free Microwave Extraction (SFME). In Malaysia, C. nutans is well-known with their high polyphenols content and medicinal purposes in traditional treatment such as fever, snake bites, anti-herpes, anti-inflammatory properties and etc. In previous extraction, conventional methods have been used to extract the polyphenols content such as maceration and soxhlet extraction which consumed a longer time and high amount of solvent which may toxic or poison the polyphenols content. Therefore, several methods have been introduced to reduce the consumption of solvent and extraction time which are Supercritical Fluid Extraction (SFE) and Microwave-Assisted Extraction (MAE). However, this method still used solvent to extract. Thus, Solvent-Free Microwave Extraction is conducted to extract which the extraction is without consumed any solvent or water. The extracts are analysed by Folin-Ciocalteu colorimetric method and aided by UV-Vis Spectrometer in order to achieve one of the objectives which is to determine the total phenols content (TPC). Furthermore the effect on extraction is investigated: microwave power and extraction time. In order to explain more the efficiency in extraction of the polyphenol content, extraction temperature and energy absorbed during the exposure to the microwave radiation have been studied and analysed. Among the results, the best result which indicated higher total phenol content extracted by SFME which used microwave power, 240 W and extraction time, 1 min, is 1.4610 mg GAE/g DS with energy absorbed, 0.90 kJ. The polyphenols yield is depended on the microwave power and extraction time as well as extraction temperature and energy absorbed. The higher microwave power and longer extraction time may lead to the degradation of polyphenols due to high extraction temperature.

TABLE OF CONTENT

AUTHOR'S DI	ECLARATION	i
APPROVAL C	ERTIFICATION	ii
ACKNOWLEI	DGEMENT	iv
ABSTRACT		v
LIST OF TABI	LES	viii
LIST OF FIGU	JRES	ix
LIST OF SYM	BOLS	x
LIST OF ABBI	REVIATIONS/NOMENCLATURE	xi
CHAPTER ON	IE	1
INTRODUC	TION	1
1.1 BA	CKGROUND STUDY	1
1.2 OB	JECTIVES OF THE STUDY CLEARLY IDENTIFIED	3
1.3 PR	OBLEM STATEMENT	3
1.4 SC	OPE OF RESEARCH	4
CHAPTER TV	VO	5
LITERATUI	RE REVIEW	5
2.1 INT	TRODUCTION	5
2.2 CL	INACANTHUS NUTANS LINDAU (C. NUTANS)	5
2.2.1	Ethnomedicinal Uses and Pharmacological Effects	8
2.2.2	Toxicity	12
2.2.3	Phytocompounds	13
2.2.4	Polyphenols	15
2.3 EX	TRACTION METHOD	16
2.3.1	Conventional Techniques	16
2.3.1.1	Steam Distillation	16
2.3.1.2	Hydrodistillation	17
2.3.1.3	Simultaneous Distillation-Extraction	17
2.3.2	Advanced Technology Extraction Method	18
2.3.2.1	Supercritical Fluid Extraction (SFE)	19
2.3.2.2	Ultrasound-Assisted Extraction (UAE)	19
2.3.2.3	Microwave-Assisted Extraction (MAE)	20
2.3.2.6	Microwave-Assisted Hydrodistillation	21
2.4 PA	RAMETERS AFFECTING THE EXTRACTION PROCESS	22

CHAPTER ONE

INTRODUCTION

1.1 BACKGROUND STUDY

Clinacanthus Nutans Lindau is one of the family 'Acanthaceae'. It is basically a small shrub that native to tropical Asia countries. The name of Sabah Snake Grass or 'Belalai Gajah' is well known in Malaysia for C. nutans. [1]. In Malaysia and Thailand, this plant has been used as a remedy for bites and stings which is from snake, skin rashes, herpes simplex virus (HSV) and varicella-zoster virus (VZV) lesions [2, 3]. Moreover, the leaves of C. nutans also possesses anti-hepatitis, anti-herpes, and anti-inflammatory properties. Thus, it is can be used as prevention and treatment on the cancer [4-6]. In Thailand the C. nutans is classified as principal medicinal plant for primary healthcare by the Thai Ministry of Public Health (National Drug and Committee, 2006). The extensive research is being conducted on the C. nutans for its medicinal properties [4]. In recent years, the C. nutans has attracted many people interest due to their properties which is properties for cancer treatment. Due to their alleged properties in cancer treatment have been attracted the researchers to further study on it [5].

In previous phytocompounds studies, the C. nutans show the present of a series of polyphenols, flavonoids, stigmasterol, β-sitosterol, lupeol, betulin, C-glycosyl flavones, vitexin, isovitexin, shaftoside, isomollupentin, 7-*O*-β-gluco pyranoside, orientin, isoorientin, cerebrosides monoacylmonogalactosylglycerol and sulfurcontaining glucosides [7-9]. Furthermore, among these phytocompounds, the antiviral and anti-HSV activity are significantly shown by glycoglycerolipids and digalactosyl diglycerides [10]. Not just that, polyphenols is well-known with their properties as antioxidants, anti-inflammatory, anti-allergic, and ant carcinogenic activity, and the quality and value of food can be improved by these properties as mentioned by Liu, 2004 [11]. In order to extract the polyphenols in the C. nutans, various methods of extraction have been done to study the polyphenols. Moreover, each of the methods have different efficiency to extract. In which, there are parameters that affect the