UNIVERSITI TEKNOLOGI MARA

REVERSIBLE REACTION KINETIC OF TETRAESTER FORMATION SIMULATION FROM SECONDARY DATA: EFFECT OF TEMPERATURE

FATIN NABILA BINTI MOHD ARIPIN

B. Eng. (Hons) Chemical

July 2019

ABSTRACT

Polyol ester synthesized from palm oil methyl ester (POME) are environmentally friendly, biodegradable and non-toxic bio-lubricants. A kinetic model that describe chemical transesterification of palm oil-based methyl esters (POMEs) with pentaerythritol (PE) has been developed. The reaction is believed to be a series reaction whereby POME and PE reacted to form an intermediates of PE monoester, PE diester, PE triester and a designed product of PE tetraester. However, the data that were key in in the Matlab is based on overall reversible transesterification reaction. The model considers the transesterification reaction to take place in both forward and reverse directions. The resulting kinetic equations were solved using ode45 solver function in MATLAB. The obtained results were comparing the simulated curve with experimental data. From the results, a good reaction rate was observed only for temperature up to 170°C. The kinetic reaction rate equation used able to predict the value of rate constant with accurate as temperature increase up to 170°C while temperature at 180°C indicated at higher temperature tends to reverse the reaction.

TABLE OF CONTENTS

	AUTHOR'S DECLARATION	1
	SUPERVISOR'S CERTIFICATION	2
	COORDINATOR'S CERTIFICATION	3
	ABSTRACT	4
	ACKNOWLEDGEMENT	5
	TABLE OF CONTENTS	6
	LIST OF TABLES	8
	LIST OF FIGURES	9
	LIST OF ABBREVIATIONS / NOMENCLATURE 1	0
	CHAPTER ONE 1	1
	INTRODUCTION 1	1
1.1	Research Background1	1
1.2	Problem Statement 1	2
1.3	Research Objective 1	3
1.4	Scope and Limitation of Work1	3
	CHAPTER TWO 1	4
	LITERATURE REVIEW 1	4
2.1	Vegetable Oil-Based Lubricant 1	4
2	1.1 Bio-lubricant from Palm Oil 1	5
2.2	Tetra ester1	7
2.3	Process of Transesterification Process 1	8
2	3.1 Transesterification of Acid Catalyzed 1	8

2	.3.2	Transesterification of Base-Catalyzed	19
2.4	F	actors of Transesterification Process	20
2	.4.1	Reaction Temperature	20
2	.4.2	Molar Ratio of Reactant to Substrate	21
2	.4.3	Catalyst	22
2	.4.4	Agitator Speed	23
2	.5	Simulation Methodology	24
	СН	APTER THREE	26
	SIN	IULATION METHODOLOGY	26
3.1	K	inetic Mechanism and Assumptions	26
3.2	Р	rocedures	27
3	.2.1	Kinetic model equation	27
3	.2.2	Matlab Simulation	29
	СН	APTER FOUR	30
	RE	SULTS AND DISCUSSIONS	30
4.1		SULTS AND DISCUSSIONS	
4.1 4.2	E		30
	E E	ffect of Temperature on Transesterification Process	30 31
4.2	E E	ffect of Temperature on Transesterification Process ffect of Reaction Time at Various Temperature	30 31 32
4.2	E E CH	ffect of Temperature on Transesterification Process ffect of Reaction Time at Various Temperature ffect of Rate Constant, k at Various Temperature	 30 31 32 37
4.2 4.3	E E CH CO	ffect of Temperature on Transesterification Process ffect of Reaction Time at Various Temperature ffect of Rate Constant, k at Various Temperature APTER FIVE	 30 31 32 37 37
4.24.35.1	E E CH CO	ffect of Temperature on Transesterification Process ffect of Reaction Time at Various Temperature ffect of Rate Constant, k at Various Temperature APTER FIVE NCLUSION AND RECOMMENDATIONS	 30 31 32 37 37 37
4.24.35.1	E E CH CO CO	ffect of Temperature on Transesterification Process ffect of Reaction Time at Various Temperature ffect of Rate Constant, k at Various Temperature APTER FIVE NCLUSION AND RECOMMENDATIONS	 30 31 32 37 37 37 37 37

CHAPTER ONE INTRODUCTION

1.1 Research Background

Renewable resources such as animal fats and plant oils can produced bio-lubricants that also known as oil-based lubricants whereas these products are environmentally friendly, biodegradable and non-toxic lubricants (Chan, et al., 2018). In lubricant production, plant-based oil is one of the potentials to replace the mineral oils since their structure is similar and comes along with the characteristics of being renewables, economic, environmentally friendly and nontoxic (Heikal, et al., 2017).

Regarding to European standards, bio-based carbon content and biodegradability that required for a certified bio-lubricants at least 25% and 60% respectively. There are factors affected the market demand which are government directives, global demand and consumer environmental awareness for lubricants. Bio-lubricant is an alternative way that researchers found to overcome the increasingly worse issue that provide hazardous that required high environmental cost and non-degradable lubricant entering the environment.

Process of transesterification is the main process in bio-lubricant production. The functions of bio-lubricant are to prevent heat loss and reduce wear resulting from contact of moving surfaces, to prevent corrosion and to reduce oxidation (Cerón, et al., 2018). Bio-lubricant can be described as liquid oils produced from renewable or biomass feed stock that can provide the oil easily biodegradable and harmless to human beings or aquatic habitat due to toxicity.

Other than transesterification process, hydrogenation and epoxidation process also can be applied for lubricant production. This process is the chemical modification due to the production of bio-lubricant have limitations of plant oil. This modification is to produce synthetic ester by enhance the bio-lubricant thermal stability (Resul, et al., 2012).