POWER GENERATION ALLOCATION IN SMART GRID USING DWARF MONGOOSE OPTIMIZATION

MOHAMAD IRFAN BIN SHAMANI

Thesis submitted in fulfilment
of the requirement for the degree of
Bachelor of Science
Mathematical Modelling and Analytics (Hons.)

College of Computing, Informatics and Mathematics Universiti Teknologi MARA

February 2025

ABSTRACT

Dwarf Mongoose Optimization (DMO) is a new metaheuristic algorithm that published in 2022 by Jeffrey O. Agushaka, Absalom E. Ezugwu and Laith Abuligah. DMO is inspired by the social and adaptive behaviours of Dwarf Mongoose which imitates their collective decision-making and foraging strategies for its algorithms. This method is frequently used for solving optimisation problems which designed to minimize or maximize specifics objectives. A real-word problem where DMO could be used is optimization energy allocation within power generation system. This study focusses on implementing DMO to optimize energy generation system which aiming to minimize the cost of nine energy sources while satisfying demand constraint. By applying real-world data from U.S. Energy Information Administration EIA website, DMO demonstrates its ability to find the best solution while including the updates bounds and cost parameters of various energy sources. The results show that the population size on mongoose is an important factor in finding optimal solution. The findings highlight the potential of DMO in solving optimization problem particularly in optimizing energy generation system.

ACKNOWLEDGEMENT

First and foremost, I would like to praise my deepest gratitude to Allah, the most Gracious, the most Merciful and the Sustainer of the universe for giving me the strength for finishing this project. I extend my deeply grateful to my supervisor, Dr. Atikah Binti Salahuddin, for her exceptional guidance and encouragement throughout the completion of my final year project. This project could not have been completed without her guidance. I also would like to express my deepest appreciation to my classmates and friends who supported and helped me through the period of completing this project. Finally, I am also grateful for my family who giving me the strength and encouragement in completing this project.

TABLE OF CONTENTS

DECLARATION BY THE SUPERVISOR		i
DECLARATION BY THE CANDIDATE		ii
ABSTRACT		iii
ACKNOWLEDGEMENT		iv
TABLE OF CONTENTS		v
LIST OF TABLES		viii
LIST OF FIGURES		ix
INTRODUCTION OF RESEARCH		1
1.1	Introduction	1
1.2	Background of Study	1
1.3	Problem Statement	4
1.4	Objectives	5
1.5	Significance of the Project	6
1.6	Scope of the Project	6
1.7	Project Benefits	7
1.8	Definition of Terms and Concept	8
1.9	Organization of Report	9
LITERATURE REVIEW		11
2.1	Introduction	11

2.2	Importance of Energy and Smart Grids	11
2.3	Challenge in Energy Supply and Demand	12
2.4	Optimization Technique in Smart Grid	13
2.5	Metaheuristic Optimization Techniques	14
2.6	Dwarf Mongoose Optimization Algorithm	15
2.7	Application of Dwarf Mongoose Optimization in Smart Grid	15
2.8	Conclusion	16
METHODOLOGY		
3.1	Introduction	17
3.2	Research Step	17
3.3	Conclusion	24
IMPLEMENTATION		
4.1	Introduction	25
4.2	Development Environment	25
4.3	Problem Formulation	26
4.4	Dwarf Mongoose Optimization Algorithm Implementation	29
4.5	Conclusion	36
RESULTS AND DISCUSSION		
5.1	Introduction	37
5.2	Energy Sources Contribution Based on Number of Mongoose	37
5.3	Computational Time Based on Number of Mongoose	40