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ABSTRACT

The higher-order ordinary differential equation (ODE) is essential for accurately 

describing complex systems that cannot be captured by first or second-order models. 

This research employs various numerical methods to solve higher-order ODEs for 

fourth- and fifth-order, including both homogeneous, non-homogeneous and stiff 

equations. The methods include Euler's Method, Heun's Method, the Fourth-Order 

Runge-Kutta method, Fifth-Order Runge-Kutta method and Runge-Kutta-Fehlberg 

method. To enhance the accuracy of approximate solutions for higher-order ODE, the 

numerical methods are combined with Richardson's and Aitken's extrapolation, 

respectively. The approximate solutions for each method are presented in tables and 

visualised through graphs. The error for each method is recorded in tables and 

illustrated through graphs to identify the most effective method, while the CPU time is 

measured to evaluate the computational cost. The results showed that the combination 

of Runge-Kutta fifth-order method and Runge-Kutta-Fehlberg method with Aitken's 

extrapolation gives the best result in solving the fourth-, fifth-order for both 

homogeneous and non-homogeneous. For stiff equation, Runge-Kutta-Fehlberg 

method with Aitken's extrapolation give the lowest error compared to Runge-Kutta 

fifth-order method with Aitken's extrapolation. For, the combination of Richardson's 

extrapolation can effectively reduce the computational cost but its accuracy is not good 

as combining with Aitken's extrapolation.
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