

TITLE: EXPLORING THE POTENTIAL OF *SPIRULINA PLATENSIS* CULTIVATED IN FISH FARM WASTEWATER AS A BIOFERTILIZER

SUPERVISOR: NORZILA BINTI MOHD

SCHOOL OF CHEMICAL ENGINEERING COLLEGE OF ENGINEERING

2024

AUTHOR'S DECLARATION

" I hereby declare that this report is the result my own work except for quotations and summaries which have been duly acknowledged."

Name of Student	:	Nuraini binti Nawang
Student I.D. No.	:	2022628936
Programme	:	Diploma in Chemical Engineering
College/School	:	College of Engineering/School of Chemical Engineering
Signature of Student	:	
Date	:	12 February 2025

ABSTRACT

Increasing environmental concerns regarding aquaculture wastewater disposal and the excessive use of chemical fertilizers in agriculture have underscored the need for sustainable alternatives. This study evaluates the feasibility of cultivating Spirulina platensis in fish farm wastewater as a potential biofertilizer. The growth performance of Spirulina platensis was compared between fish farm wastewater and synthetic media by examining growth profile, growth kinetics and elemental composition of dried biomass. Results indicate that Spirulina platensis cultivated in 100% fish farm wastewater achieved a high biomass productivity of 3.625 ± 0.894 g/L, attributable to its efficient absorption and assimilation of nitrogen and phosphorus. Although the wastewater culture exhibited a prolonged lag phase compared to that in synthetic media, the extended exponential phase ultimately resulted in a superior overall biomass yield. Furthermore, elemental analysis confirmed that the biomass is nutrient rich particularly in nitrogen, making it suitable for agricultural applications, including the production of leafy vegetables, legumes, and fruit crops. These findings underscore the potential of fish farm wastewater as a sustainable substrate for Spirulina platensis cultivation, thereby promoting effective aquaculture wastewater management and reducing reliance on chemical fertilizers. Future research should focus on optimizing growth conditions and evaluating the long-term sustainability of Spirulina-based biofertilizers.

TABLE OF CONTENTS

AUTHOR'S DECLARATION			2	
ABST	RACT		3	
TABLE OF CONTENTS			4	
СНАН	PTER C	DNE BACKGROUND	6	
1.1	Introduction		6	
1.2	Literat	7		
	1.2.1	Microalgae	7	
	1.2.2	Spirulina Platensis	8	
	1.2.3	Fish Farm Wastewater as a Growth Medium	9	
1.3	Proble	m Statement	11	
1.4	Object	Objectives		
1.5	Scope of Study			
СНАГ	PTER T	IWO METHODOLOGY	13	
2.1	Introdu	uction	13	
2.2	Materials, Apparatus and Instruments		14	
	2.2.1	Materials	17	
	2.2.2	Apparatus	22	
	2.2.3	Instruments		
2.3	Metho	d/synthesis	24	
	2.3.1	Preparation of Media	24	
	2.3.2	Microalgae Cultivation	26	
	2.3.3	Microalgae Harvesting	27	
	2.3.4	Biomass Collection	28	
	2.3.5	Elemental Profiling	29	

СНА	PTER	FHREE RESULT AND DISCUSSION	30	
3.1	Introd	30		
3.2	Data Analysis			
	3.2.1	Production of Biomass	30	
	3.2.2	Growth Profile of Spirulina Platensis	32	
	3.2.3	Growth Kinetics of Spirulina Platensis	36	
	3.2.4	Elemental Profiling and Biofertilizer Assessment	39	
СНА	PTER]	FOUR CONCLUSION AND RECOMMENDATION	40	
4.1	Concl	usion	40	
4.2	Recor	nmendation	41	
REF	ERENC	CES	42	