

TITLE: THE FUNCTIONAL GROUP K/AC CATALYST FOR BIODIESEL PRODUCTION

SUPERVISOR: TS. NORKAMRUZITA BINTI SAADON

SCHOOL OF CHEMICAL ENGINEERING COLLEGE OF ENGINEERING

2024

AUTHOR'S DECLARATION

" I hereby declare that this report is the resof my own work except for quotations and summaries which have been duly acknowledged."

Name of Student	:	Nur Syahida Syafiqah Binti Noralimi	
Student I.D. No.	:	2022676106	
Programme	:	Diploma in Chemical Engineering	
College/School	:	College of Engineering/School of Chemical Engineering	
Signature of Student	.:		
Date	:	30/01/2025	

ABSTRACT

Potassium activated carbon (K/AC) catalysts are attractive for transesterification and important step in the production of biodiesel. In this study, the preparation of various K/AC catalysts at different composition mass ratio (1:1, 1:3 and 1:4) in relation to the characterization and functional groups of the derived biomass K/AC which can be produced from OPKS as the carbon source.

The fourier transform infrared spectroscopy (FTIR) was used to determine the important functional groups that affect the reactivity and activity of catalyst. Presence of hydroxyl (-OH), carbonyl (-C=O), and aromatic (-C=C) functional groups was observed in the results of the FTIR spectra contributing to a vital increase in catalytic activity.

The surface chemistry of the catalyst was found to be a strongly dependent on the K:AC mass ratio, with potassium-rich compounds having a higher basicity and altered functional groups compared with the K-deficient compounds.

The research presents an eco-friendly approach, indicating the potential K/AC catalyst in biodiesel production from agricultural wastes. Future work should focus on catalyst optimisation, biodiesel synthesis testing and scalability for industrial use.

TABLE OF CONTENTS

AUT	2		
ABSTRACT			
TABLE OF CONTENTS			
СНА	PTER ONE BACKGROUND	6	
1.1	Introduction	6	
1.2	Literature Review	8	
	1.2.1 Catalysts	8	
	1.2.2 Trans-esterification	9	
1.3	1.3 Problem Statement		
1.4	Objectives	13	
1.5	Scope of Study	13	
CHAPTER TWO METHODOLOGY		14	
2.1	Introduction	14	
2.2	Materials	14	
2.3	Method/synthesis		
СНА	20		
3.1	Introduction	20	
3.2	Data Analysis		
	3.2.1 FTIR Analysis K/AC catalyst (1:1)	18 - 19	
	3.2.2 FTIR Analysis K/AC catalyst (1:3, 1:4)	20 - 23	
CHAPTER FOUR CONCLUSION AND RECOMMENDATION			
4.1	Conclusion		
4.2	Recommendation		

REFERENCES

28 - 28