## **SMART SCHOOL SYSTEM (3S)**

This thesis is presented in partial fulfillment for the award of the

Bachelor of Electrical Engineering (Honors)

UNIVERSITI TEKNOLOGI MARA

FAEZAH BINTI AHMAD
Faculty of Electrical Engineering
UNIVERSITI TEKNOLOGI MARA
40450 SHAH ALAM, SELANGOR

### **ACKNOWLEDGEMENT**

In the name of Allah SWT, this book has been completed. It is created with the help of many people directly and indirectly. First of all, I would like to express "Syukur Alhamdulillah" to the almighty Allah for giving me the time to complete this project and the report as a fulfillment of the requirements for a Degree of Bachelor Engineering. In the process of finishing this project, I am really indebted to numerous persons that have contributed their time, effort and help very much.

I would like express my deepest gratitude and appreciation to my supervisor, Mrs. Putri Aidawati Ahmad. Without her approval and guide, the project and this book will not be successfully completed. Also I would like to thank these people in no particular order: Mr. Azri, Mr. Zainal and Mr. Uzer Mohd. Noor, for their brilliant and crazy ideas in developing this project. Then, I also would like to express my heartiest thanks and appreciation to my family as they always inspired me throughout my whole moment study here.

Finally, I would like to enclose a thousand thanks to my entire course mate and friends especially to Mohd. Nazri B. Abd. Rahim, Ahmad Raihan B. Hamzah, Shukri, Salwani & Suhaida for their support and encouragement, which have made this project a very enjoyable and memorable one.

### **ABSTRACT**

This thesis presents the development of 'Smart School System (3S)' to record the exam results and fees payment of students who are studying in a private school. The project is an extended project from the smart attendance system to supervise the movement of school students leaving and entering the school using 'Contact-less Smart Card'. The project is focused on system where teachers have access to the system to input the examination marks of the class students that he or she is handling. The fees payment is recorded by an administrator when the parents/students pay their school fees early of the month. This system is then loaded in to the school website where parents or guardian can view their children marks or status of the fees payment. Hence the parents can monitor their children performance anytime they want and any immediate measures can be taken if the performance of their children is not up to the expected standard. In addition, parents also can view any information about the school (eg: school background, activities and current information) which will update weekly by the administrator).

# TABLE OF CONTENTS

| CHAPTER |                        |                     |                           | PAGE |
|---------|------------------------|---------------------|---------------------------|------|
| 1       | INTRODUCTION           |                     |                           | 1    |
|         | 1.0                    | Introdu             | action                    | 1    |
|         | 1.1 Project Overview   |                     |                           | 3    |
|         | 1.2                    | Object              | ives of The Project       | 4    |
|         | 1.3 Procedure of Works |                     |                           | 5    |
|         | 1.4                    | Outline             | e of The Thesis           | 8    |
| 2       | LITERATURE REVIEW      |                     |                           | 9    |
|         | 2.0                    | Introdu             | uction                    | 9    |
|         | 2.1                    | Descrip             | ption of Smart Card       | 9    |
|         |                        | 2.1.1               | Contact cards             | 11   |
|         |                        | 2.1.2               | Contactless Cards         | 12   |
|         | 2.2                    | MFR1000RDU Hardware |                           | 13   |
|         |                        | 2.2.1               | Description of Hardware   | 13   |
|         |                        | 2.2.2               | MFR1000RDU Pin Function   | 13   |
|         |                        | 2.2.3               | Features                  | 14   |
|         |                        | 2.2.4               | Electrical Specifications | 14   |
|         |                        | 2.2.5               | Mechanical Specifications | 15   |
|         |                        | 2.2.6               | Connection Block Diagram  | 16   |
|         |                        | 2.2.7               | Mifare Cards Overview     | 16   |
|         |                        |                     | 2.2.7.1 Defination        | 17   |
|         |                        | 2.2.8               | Applications              | 17   |
|         |                        | 2.2.9               | Authentication Key        | 19   |
|         |                        | 2.2.10              | Internal Eeprom           | 19   |

### CHAPTER 1

### INTRODUCTION

#### 1.0 Introduction

RFID stands for **Radio-Frequency IDentification**. The acronym refers to small electronic devices that consist of a small chip and an antenna. With RFID, the electromagnetic or electrostatic coupling in the RF portion of the electromagnetic spectrum is used to transmit signals. An RFID technology is means of identifying a unique object or a person using a radio frequency transmission. RFiD tags can be programmed to receive, store and transmit information such as serial number, place of assembly or personal information such as healthcare records.

Today, many applications are now using contact-less smart card technology for identification purposes. Radio Frequency IDentification (RFID) which an automatic identification method, relying on storing and remotely retrieving data using devices called RFID tags or transponders.

An RFID tag is an object that can be attached to or incorporated into a product, animal, or person for the purpose of identification using radio waves. Chip-based RFID tags contain silicon chips and antennas. Passive tags require no internal power source, whereas active tags require a power source. These applications range from time and attendance, physical access control (facilities and parking areas), logical access control (networks, databases and PCs) and Cashless vending and food services [7].

The term Contact-less smart card refers to identification cards (for example, some credit cards) that do not need to make contact with the reader to be read, or swiped in a special slot. This capability is implemented using a tiny Radio Frequency Identification (RFID) tag in the card; the intent is to provide the user with greater convenience by speeding checkout or authentication processes [8].