

EXTENDED ABSTRACT SPORTS SCIENCE

THE ACUTE EFFECTS OF BLOOD FLOW RESTRICTION TRAINING ON PERCEIVED EXERTION AND SPRINT PERFORMANCE IN FUTSAL ATHLETES

Nur Syafiqah Azwarul Nizam, & Nurul Ain Abu Kasim*

Faculty of Sports Science and Recreation, Universiti Teknologi MARA, Negeri Sembilan Branch, Seremban Campus, Negeri Sembilan, MALAYSIA *Corresponding author: nurulain755@uitm.edu.my

Keywords: Blood flow restriction, Repeated sprint, Futsal athletes, Perceived exertion, Speed consistency

I. Introduction

Blood Flow Restriction (BFR) training offers a low-load alternative to high-intensity exercises, potentially enhancing athletic performance while minimizing overuse injuries [1,2]. Despite its growing popularity, its impact on speed and rated perceived exertion (RPE) in high-intensity sports like futsal remains underexplored [3]. This study investigates the acute effects of BFR on RPE and sprint performance, addressing gaps in understanding its efficacy for intermittent sports [4].

II. METHODS

Twenty healthy male futsal athletes participated, free of injuries or chronic diseases. Two trials were conducted: one with BFR applied during Yo-Yo IR1 training and the other as a control without BFR. After training, athletes performed repeated sprint tests. Speed was measured using Smartspeed timing gates, and RPE was assessed with the Borg scale [5]. Results were statistically analyzed.

III. RESULTS AND DISCUSSION

A. Rated Perceived Exertion

RPE was significantly higher during BFR training (13.4 ± 2.21) compared to non-BFR training (8.45 ± 1.05). This indicates that participants perceived greater exertion under BFR conditions, highlighting the physiological strain imposed by BFR during high-intensity activities (Table 1)...

B. Speed

Sprint speeds were significantly in the BFR condition (4.39 ± 0.30) compared to the non-BFR condition (4.93 ± 0.51) , as demonstrated by an independent sample t-test. This finding indicates that BFR training is more effective for enhancing sprint performance, with non-BFR potentially impairing speed during high-intensity intermittent activities (Table 1).

TABLE I
INDEPENDENT SAMPLES T-TEST OF RPE AND AVERAGE SPEED OF BFR AND
NON-BFR GROUP

Variables	Group	N	Mean (SD)	t-value	df	p-value
RPE	BFR	20	13.4 (2.21)	9.05	38.0	0.001
	Non-BFR	20	8.45 (1.05)			
Average speed (m)	BFR	20	4.39 (0.302)	-4.06	38.0	0.001
	Non-BFR	20	4.93 (0.511)			

IV. Conclusions

This study highlights that BFR training effectively enhances sprint performance while increasing perceived exertion during high-intensity activities. BFR offers a promising alternative to traditional training methods, optimizing speed performance for futsal athletes. These findings support the utility of BFR in improving performance metrics in intermittent, high-intensity sports like futsal.

ACKNOWLEDGMENT

The authors thank the futsal athletes from Universiti Teknologi MARA, Negeri Sembilan Branch, Malaysia, for their participation and Wan Muqhriz Wan Yunus for assisting with data collection.

REFERENCES

- [1] Loenneke, J. P.,et.al.. (2012). Potential safety issues with blood flow restriction training. Scandinavian Journal of Medicine & Science in Sports, 22(5), 511–518. https://doi.org/10.1111/j.1600-0838.2012.01471.x.
- [2] Karabulut, M.et.al (2010). The effects of low-intensity resistance training with vascular restriction on leg muscle strength in older men. European Journal of Applied Physiology, 108(1), 147–155. https://doi.org/10.1007/s00421-009-1289-5.
- [3] Scott, B. R.,et.al. (2015). Exercise with blood flow restriction: An updated evidence-based approach for enhanced muscular development. Sports Medicine, 45(3), 313–325. https://doi.org/10.1007/s40279-014-0288-1.
- [4] Counts, B. R.,et.al. (2016). Influence of relative blood flow restriction pressure on muscle activation and hypertrophy. Physiology International, 103(4), 462–472. https://doi.org/10.1556/2060.103.2016.4.5.
- Borg, G. A. (1982). Psychophysical bases of perceived exertion.
 Medicine & Science in Sports & Exercise, 14(5), 377–381.
 https://doi.org/10.1249/00005768-198205000-00012.

N.S.A., Nizam, & N.A.A., Kasim, Proceedings of the International Graduate Colloquium: Sports and Physical Exercise Assembly of Knowledge Sharing, i-SPEAK, 2025, 05th–06th February, Malaysia.