

TITLE:

EXTRACTION OF LIGNIN FROM RICE HUSK AND STUDY ITS THERMAL STABILITY

SUPERVISOR:

DR. MARSHAHIDA BINTI MAT YASHIM

SCHOOL OF CHEMICAL ENGINEERING COLLEGE OF ENGINEERING

2023

AUTHOR'S DECLARATION

		eport is the resof my own work except for quotations and which have been duly acknowledged."
Name of Student	:	NUR YASMIN HANI BT MOHD SHAHRUL FIRDAUS
Student I.D. No.	:	2022840828
Programme	:	Diploma in Chemical Engineering
College/School	:	College of Engineering/School of Chemical Engineering
Signature of Student	:	
Date	:	12 FEBRUARY 2025

ABSTRACT

Lignin represents a very complex organic polymer that is important in the structure of the plant cell walls, which imparts strength and resistance to degradation. Lignin is considered the second most abundant renewable carbon source on earth and hence attracts much interest in a variety of applications, especially in the development of sustainable materials. Traditional methods for lignin extraction usually lead to low yield and variable quality, hindering its effective use and valorization in high-added-value products. This work is, therefore, designed to overcome the challenges of lignin extraction through the optimization of the extraction methods for maximum yield and purity while minimizing the thermal degradation of the material in the process. The extracted lignin will be characterized for thermal stability using advanced analytical techniques like thermogravimetric analysis (TGA). The thermal stability of lignin is of utmost importance concerning its value-added application in various industries. The research on the subject will be of paramount importance in the pulp and paper industry, where lignin is produced as a by-product during the pulping process. The objectives of this work are to improve the extraction techniques and investigate the thermal properties to enhance lignin's economical feasibility as a renewable resource and further develop its use not only as an attractive low-cost fuel but also as a promising sustainable alternative for adhesives, coatings, and other value-added products. Eventually, this will help in more efficient and greener practices of pulp and paper production, aligning with sustainability objectives while fully realizing the potential of lignin as a versatile biomaterial.

TABLE OF CONTENTS

		Page
AUT	THOR'S DECLARATION	2
ABS	STRACT	3
TAB	BLE OF CONTENTS	4
CHA	APTER ONE BACKGROUND	6
1.1	Introduction	6-7
1.2	Literature Review	7-8
	1.2.1 Extraction Lignin	8-9
	1.2.2 Thermal Stability of the Lignin	9
	1.2.2 Application of Lignin	10
1.3	Problem Statement	10-11
1.4	Objectives	11-12
CHA	APTER TWO METHODOLOGY	13
2.1	Introduction	13
2.2	Materials	13-15
2.3	Method/synthesis	15-17
CHA	APTER THREE RESULT AND DISCUSSION	18
3.1	Introduction	18
3.2	Data Analysis	19
	3.2.1 Sub Data 1 Analysis	19-20
	3.2.2 Sub Data 2 Analysis	21-22
	3.2.3 Conclusion of the Data Analysis	22-23
CHA	APTER FOUR CONCLUSION AND RECOMMENDATION	23
4.1	Conclusion	23
4.2	Recommendation	23-24

REFERENCES 24-27