
JOURNAL OF ELECTRICAL AND ELECTRONIC SYSTEMS RESEARCH                                           https://doi.org/10.24191/jeesr.v26i1.009

                                 

 

71 

 

Abstract— The increasing use of renewable energy (RE) 

especially photovoltaic (PV) systems has made it essential to 

optimize their integration into power distribution networks, 

especially under time-varying load conditions. This study 

addresses the challenge of aligning PV generation with fluctuating 

load demands to reduce power losses and enhance voltage stability 

by analyzing the impact of multiple PV systems on industrial, 

residential and commercial loads within the IEEE 69-bus 

distribution network. The Coyote Optimization Algorithm (COA) 

is employed to determine the optimal location and size of PV 

systems. The results indicate a significant 45.9553% reduction in 

power loss for commercial loads with three PV systems, along with 

the most substantial improvement in voltage profiles compared to 

other load types. These findings highlight the importance of 

strategic PV placement and demonstrate the effectiveness of COA 

in enhancing  network performance. 

 
Index Terms— Photovoltaic, Coyote Optimization Algorithm, 

Time-Varying Load, Power Losses, Voltage Profile. 

 

I. INTRODUCTION 

The growing global demand for energy, driven by increasing 

population and the desire for a higher standard of living, has 

highlighted the urgent need to transition from finite fossil fuels 

to sustainable energy sources like wind, solar, and biomass [1]. 

Among these, photovoltaic (PV) systems have emerged as a 

leading solution due to their sustainability and decreasing costs, 

leading to widespread adoption in power networks, particularly 

in large-scale projects.  By the end of 2019, PV installations had 

exceeded 600 GWp, contributing to 3% of global electricity 

production [2].  

 

PV systems can be categorized into off-grid and on-grid 

configurations. Off-grid systems are typically utilized in remote 

or isolated locations where extending the main grid is not 

feasible, thereby providing electricity to approximately 14% of 

the global population without access [3]. On-grid systems, 

which accounted for over 95% of PV capacity in 2018, are 

connected to the main grid and are further classified into 

residential, commercial/industrial, and utility-scale systems. 

Residential and commercial/industrial PV systems primarily 

meet local energy demands and are connected at the distribution 

level, while utility-scale systems, which made up about 66% of 

PV capacity by 2019, inject energy directly into the 

transmission grid [2]. 

While PV systems offer significant benefits, such as reducing 

greenhouse gas emissions and providing decentralized energy 

production, their effectiveness depends heavily on optimal 

placement and sizing within the electrical grid. Improper 

placement can lead to increased power losses, voltage 

instability and decreased operational efficiency highlighting the 

critical need for strategic planning. To address these challenges, 

various methods have been employed to determine the optimal 

placement and sizing of PV systems. For example, [4] assessed 

how Particle Swarm Optimization (PSO) and Genetic 

Algorithm (GA) performed within an adaptive control method 

for grid-tied PV systems using active power filters. The study 

concluded that PSO provided the best solution, faster 

convergence and shorter running time indicating its potential 

for efficient optimization of PV systems in distribution 

networks. Similarly, [5] introduced a multi-objective algorithm 

designed to determine the optimal size and placement of PV 

systems in radial distribution networks, with a focus on 

improving voltage profiles and minimizing power losses. 

Additionally, [6] employed the PSO  to find the ideal placement 

and sizing of PV systems in the IEEE 14-bus and 39-bus 

networks, which resulted in enhanced voltage stability and 

increased grid reliability. 

Further research in [7] utilized the Marine Predators 

Algorithm (MPA) to design a mathematical model aimed at 

reducing active power losses. The study ensured that voltages 

and line currents stayed below permissible limits, resulting in 

the ideal location and sizing of several PV systems in a 

distribution network.  Moreover, [8] focused on optimizing the 

placement and sizing of Hybrid Renewable Energy Systems 

(HRES) in Electrical Distribution Systems (EDS) using the Ant 

Lion Optimizer (ALO) algorithm on the IEEE 33-bus. The goal 

was to minimize power losses, voltage deviations and costs 
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while improving system reliability. As PV penetration in power 

networks continues to grow, challenges such as steady-state 

overvoltage, voltage fluctuations and increasing system losses 

have become more prevalent, largely due to the inherent 

variability of solar power generation influenced by 

environmental factors [9] [10]. Traditionally, most studies have 

focused on constant load models, often neglecting the variable 

nature of PV generation and load demand. This oversight has 

limited the applicability of these findings to real-world 

scenarios where demand naturally fluctuates. Recognizing the 

importance of accounting for load variations and the dynamic 

nature of PV output, recent research has increasingly shifted 

towards optimizing PV integration to maximize system 

benefits. 

In response to these challenges, metaheuristic methods have 

emerged as powerful optimization techniques excelling at 

solving complex problems despite requiring longer 

computation times than traditional methods. Continuous 

improvements have enhanced their ability to address both 

single and multi-objective models by leveraging their strengths 

and minimizing their weaknesses [11], [12]. As a result, several 

techniques have been developed in recent years to determine 

the optimal location and sizing of PV systems taking into 

account different load models and their variability. For 

example, [13] optimized the allocation of microgrid 

components for different type of loads (constant, residential, 

industrial, commercial and mixed) by employing PSO and a 

fuzzy max–min approach to evaluate cost, emissions, power 

loss and voltage deviation. The result finds that constant power 

loads lead to higher costs and losses, while constant impedance 

loads offer better loading capability.  

Moreover,  taking into account the uncertainties in load 

demand and solar irradiation, [14] enhanced the integration of 

Photovoltaic Distributed Generation (PV-DG) and Distributed 

Static Compensator (DSTATCOM) in distribution systems. 

The author employed a Modified Ant Lion Optimizer (MALO) 

to achieve cost reduction and improve voltage profiles, 

demonstrating significant advantages over other optimization 

methods in the IEEE 69-bus and 118-bus systems. In another 

study,  [15] proposed a Teaching-Learning hybrid with 

Artificial Bee Colony (TLABC) technique to optimize the PV 

location and Battery Energy Storage (BES) to reduce 24-hour 

power losses. The study takes into consideration uncertainties 

in both energy generation and demand. TLABC outperforms 

the genetic and differential evolution algorithms in most 

scenarios. On the other hand, [16] introduced the RLEO 

algorithm, an improved equilibrium optimizer using reinforced 

learning to determine the placement and sizing of PV and BES 

units in distribution networks. Applied to commercial, 

industrial and residential loads, RLEO significantly reduces 

power losses and improves voltage profiles compared to 

existing methods. 

While there has been growing interest in studying PV 

integration under time-varying load conditions, there is still a 

notable lack of research focused on optimizing PV placement 

and sizing specifically for different load types in these 

scenarios. This research aims to fill this gap by employing the 

Coyote Optimization Algorithm (COA) to determine the 

optimal placement and sizing of PV systems within the IEEE 

69-bus distribution network. By focusing on industrial, 

residential and commercial load profiles, this study seeks to 

reduce power losses and improve voltage stability through 

strategic PV integration. By achieving these objectives, the 

research contributes to the more efficient integration of 

renewable energy sources into distribution networks, 

promoting a sustainable and effective energy system. 

II. METHODOLOGY 

This study concentrates on optimizing the integration of PV 

systems within the IEEE 69-bus network, utilizing various load 

models that simulate industrial, residential, and commercial 

demands. The COA is applied to identify the optimal PV 

locations and sizes, aiming to reduce power losses and enhance 

voltage stability. Simulations are performed under defined 

constraints to validate the approach. 

A. Test System 

1) IEEE 69-Bus System 

The IEEE 69-bus system comprises 69 buses interconnected 

by 68 branches, with a total real power load of 3802.19 kW and 

a total reactive power load of 2694.60 kVAR. The system is 

designed for a base power of 12.66 kV, 100 MVA. Fig. 1 

displays the IEEE-69 bus's single line diagram [17], [11], [18]. 

 

 
Fig 1: IEEE 69-bus system 

 

B. Load Demand Modelling 

Traditional load flow analysis assumes constant power 

demands, independent of voltage levels at corresponding buses. 

However, in this study, voltage-dependent load models are 

employed, reflecting the influence of voltage levels on power 

demands for industrial, residential, and commercial loads. 

These voltage-dependent load models are static and represent 

the power-voltage relationship through an exponential formula 

which integrates time-varying loads at period (t) as detailed 

below [19]: 

𝑃𝐷𝑛𝑒𝑤,𝑖(𝑡) = 𝛾𝑃𝐷𝑖(𝑡) ∗ 𝑉𝑖
𝜎(𝑡)          (1) 

 

𝑄𝐷𝑛𝑒𝑤,𝑖(𝑡) = 𝛾𝑄𝐷𝑖(𝑡) ∗ 𝑉𝑖
𝜌

(𝑡)          (2) 

 

𝑃𝐷𝑛𝑒𝑤,𝑖 and  𝑄𝐷𝑛𝑒𝑤,𝑖  represent the reactive and active loads 
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under normal operating conditions, respectively. The 

coefficients 𝜎 and 𝜌 correspond to the load models, with their 

specific values provided in Table 1 [20].  

 

The load factor 𝛾 serves as a multiplier to either increase or 

decrease the power demand across all nodes in the network, 

while  𝑉𝑖  denotes the voltage at the i-th load bus. Fig. 2 presents 

the load demand patterns in per unit (p.u.) for three types of 

loads: industrial, residential and commercial over a 24-hour 

period as considered in this study. 
 

Fig. 2 Hourly load demand profiles for industrial, residential, and 

commercial load 

C. Hourly PV Output Data 

The PV output generation data was gathered using a data 

logger that recorded readings every half hour over an            

eight-month period in Penang. Fig. 3 presents the average PV 

generation pattern across a 24-hour span, showing an increase 

in power output starting at 8:00 AM, peaking between 12:00 

PM and 3:00 PM and then gradually decreasing after 6:00 PM 

with minimal output by 8:00 PM.  

This trend reflects the typical daily cycle of solar power 

generation with the highest output occurring around midday 

when solar irradiance is strongest. 

D. Objective Function 

The objective function aims to minimize the system’s power 

losses after the PV integration. Therefore, the total power loss 

𝑃𝑙𝑜𝑠𝑠
𝑃𝑉   is expressed as follows [19]: 

 

𝑃𝑙𝑜𝑠𝑠(𝑖,𝑗)
𝑃𝑉 =𝑅𝑖𝑗 [

(𝑃𝐷𝑖−𝑃𝑃𝑉𝑖)2+(𝑄𝐷𝑖−𝑄𝑃𝑉𝑖)2

|𝑉𝑖|2 ]           (3) 

 

𝑄𝑙𝑜𝑠𝑠(𝑖,𝑗)
𝑃𝑉 =𝑋𝑖𝑗 [

(𝑃𝐷𝑖−𝑃𝑃𝑉𝑖)2+(𝑄𝐷𝑖−𝑄𝑃𝑉𝑖)2

|𝑉𝑖|2 ]        (4) 

 

𝑃𝑙𝑜𝑠𝑠
𝑃𝑉 = ∑ (𝑃𝑙𝑜𝑠𝑠(𝑖,𝑗)

𝑃𝑉 + 𝑄𝑙𝑜𝑠𝑠(𝑖,𝑗)
𝑃𝑉 )

𝑁𝑏𝑢𝑠
𝑖=1              (5) 

 

𝑃𝑙𝑜𝑠𝑠(𝑖,𝑗)
𝑃𝑉  denotes the active power loss, and 𝑄𝑙𝑜𝑠𝑠(𝑖,𝑗)

𝑃𝑉  represents 

the reactive power loss between buses 𝑖 and 𝑗 after PV 
integration. The term 𝑅𝑖𝑗 and 𝑋𝑖𝑗  represent the resistance and 

reactance of the branch connecting these buses respectively, 

while 𝑁𝑏𝑢𝑠 represents the total number of buses in the system. 

E. Simulation Constraints 

1) PV Location  

Bus 1 is designated as the slack bus in distribution networks. 

As a result, PV systems can be integrated at any bus within the 

distribution network, up to the highest bus number in the 

system, 𝑁𝑏𝑢𝑠. 

                2 ≤ 𝑃𝑉𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ≤ 𝑁𝑏𝑢𝑠                          (6) 

 

2) Voltage magnitude limit 

The voltage magnitude limit is 1.0 p.u. 

 

𝑉𝑚𝑖𝑛≤V≤1.0                    (7) 

 

3) PV Size 

The PV size must be within the range of zero to the 

maximum load demand PDi. 

 

   0 ≤ 𝑃𝑉𝑠𝑖𝑧𝑒 ≤ ∑ 𝑃𝐷𝑖
𝑁𝑏𝑢𝑠
𝑖=1                               (8) 

 

F. Coyote Optimization Algorithm (COA) 

The COA is a metaheuristic technique that mimics the social 

and evolutionary behaviors of coyotes, a species native to North 

America. Introduced by Pierezan and Coelho in 2018, COA 

leverages swarm intelligence, where coyotes adjust their social 

dynamics and share knowledge within their packs to achieve 

optimal solutions [21]. This algorithm has been widely 

researched and effectively applied to numerous challenges in 

the electrical field, demonstrating strong performance and 

positive outcomes. In COA, the population is separated into 

multiple packs, Np with each pack consisting of a fixed number 

of coyotes, Nc. The total population size is the product of these 

two values. COA focuses on the social conditions of coyotes 

within the packs, with each coyote representing a potential 

solution and its social condition reflecting the objective 

function value.  

 

TABLE I . LOAD TYPES WITH THE EXPONENT VALUES 

No Load Type   𝜎               𝜌              𝛾 

1 Constant   0              0            1 

2 Industrial 0.18        6.00          1 

3 Residential 0.92        4.06          1 
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The algorithm starts by randomly initializing the social 

conditions of the coyotes within the search space. As the 

algorithm progresses, coyotes in each pack interact, share 

information, and adapt their social conditions. The alpha coyote 

or the best solution in each pack leads the group's evolution. 

COA also incorporates natural processes like birth and death 

replacing less adapted coyotes with new ones to maintain 

diversity. This iterative process of updating social conditions 

based on the alpha coyote and pack dynamics continues until 

the algorithm finds the optimal solution making COA effective 

for solving complex optimization problems. Fig. 4 illustrates 

the process of optimizing PV location using COA. 

 
Fig. 4 Flowchart of the optimization process using COA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

III. RESULTS AND DISCUSSION 

This section presents the simulation results and a detailed 

analysis of the impact of integrating multiple PV systems into 

the IEEE 69-bus distribution network focusing on industrial, 

residential and commercial load types. The analysis covers the 

effects of different numbers of PV installations on power loss 

reduction, load demand alignment with PV generation and 

voltage profile improvements across the network. The results 

provide insights into the effectiveness of strategic PV 

placement in optimizing network performance, highlighting the 

significant benefits of PV integration and the diminishing 

returns observed when adding more than two PV systems. 

These findings underscore the importance of understanding the 

load-specific impacts of PV integration to maximize efficiency 

and stability in power distribution networks. 

A. Simulation Results 

Table II summarizes the performance metrics for the IEEE 

69-bus network with a single PV location. The PV systems are 

all placed at Bus 61, with sizes ranging from 1.2565 MW to 

1.9427 MW depending on the load type. The commercial load 

shows the greatest reduction in power loss (41.8444%) with 

smaller reductions for residential (26.8433%) and industrial 

loads (17.9955%). Reductions in reactive power loss also 

follow this trend, with commercial loads seeing the most benefit 

(40.0023%). This data highlights the effectiveness of 

strategically sized and located PV systems especially for 

commercial loads. 

Table III shows the impact of using two PV locations on 

power loss and reactive power loss in the IEEE 69-bus network 

for industrial, residential and commercial loads. For industrial 

loads, PV systems at Buses 17 and 61 (0.3474 MW and 1.1918 

MW) reduce power loss by 19.54%, while residential loads with 

PVs at the same buses (0.4014 MW and 1.3657 MW) achieve a 

29.11% reduction. Commercial loads benefit the most, with 

PVs at Buses 17 and 61 (0.5410 MW and 1.8598 MW) cutting 

power loss by 45.29%. Reactive power loss reductions follow a 

similar trend, highlighting the effectiveness of distributed PV 

placement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE I I. SYSTEM PERFORMANCE METRICS FOR IEEE 69-BUS NETWORK WITH SINGLE PV LOCATION ACROSS 

DIFFERENT LOAD TYPES 

Parameters Industrial Residential Commercial  

PV location @ Size (MW) 1.2565 @ 61 1.4460 @ 61 1.9427 @ 61  

Ploss with PV (kW) 

Ploss base case (kW) 
Ploss reduction (%) 

Qloss with PV (kVAR) 

Qloss base case (kVAR) 
Qloss reduction (%) 

1543.4220 

1882.1189 
17.9955 

709.1633 

856.693 
17.2208 

1247.8079 

1705.6637 
26.8433 

577.0489 

776.4073 
25.6770 

1206.3314 

2074.3183 
41.8444 

566.2497 

943.7858 
40.0023 
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Table IV highlights the effectiveness of distributing PV 

systems across Buses 11, 18, and 61 in reducing power loss 

(Ploss) and reactive power loss (Qloss) in the IEEE 69-bus 

network. For industrial loads, this configuration achieves a 

19.8239% reduction in Ploss and an 18.8331% reduction in 

Qloss. Residential loads see a 29.5311% decrease in Ploss and 

a 28.0461% reduction in Qloss. Commercial loads benefit the 

most, with a 45.9553% Ploss reduction and a 43.6486% Qloss 

reduction. This distribution strategy significantly enhances 

network performance, especially for commercial loads. 

Overall, the analysis demonstrates that integrating multiple 

PV systems into the IEEE 69-bus network significantly reduces 

power losses across industrial, residential, and commercial 

loads. Among these, commercial loads consistently achieve the 

highest percentage reductions in both active and reactive power 

losses, benefiting the most from PV integration. The results 

suggest that while adding additional PV systems typically 

increases efficiency, the most significant improvements happen 

when expanding from one to two PV locations, with smaller 

benefits observed when a third PV system is introduced. This 

highlights the crucial importance of strategic PV placement in 

optimizing network performance and efficiency. 

B. PV Generation vs. Load Demand Across Different Load 

Types 

In Fig. 5, the industrial load demand shows multiple peaks 

particularly in the late afternoon and evening hours. However, 

the PV generation represented by the curves for 1 PV, 2 PVs, 

and 3 PVs peaks around midday. This misalignment between 

peak load demand and peak PV generation suggests that while 

PV systems provide significant power during daylight hours, 

they do not adequately meet the industrial demand during the 

late-day peak periods.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This indicates a potential need for additional energy sources or 

storage solutions to support the industrial load during these 

critical hours. While. Fig. 6 illustrates the residential load 

demand which remains low during the early morning and 

gradually increases reaching its peak in the evening. The PV 

generation profiles corresponding to 1 PV, 2 PVs and 3 PVs, 

peak around midday providing substantial power during the day 

but not aligning with the residential peak demand that occurs 

after sunset. This mismatch highlights the limitations of PV 

systems in addressing residential energy needs during evening 

peak hours suggesting the possible necessity of energy storage 

or supplementary solutions. 

 

 

 

 

 

 

 

TABLE III.  SYSTEM PERFORMANCE METRICS FOR IEEE 69-BUS NETWORK WITH TWO LOCATIONS ACROSS 

DIFFERENT LOAD TYPES 

Parameters Industrial Residential Commercial  

PV location @ Size (MW) 0.3474 @ 17 
1.1918 @ 61 

0.4014 @ 17 
1.3657 @ 61 

0.5410 @ 17 
 1.8598 @ 61 

 

Ploss with PV (kW) 

Ploss base case (kW) 
Ploss reduction (%) 

Qloss with PV (kVAR) 

Qloss base case (kVAR) 
Qloss reduction (%) 

1514.3680 

1882.1189 
19.5392 

697.6884 

856.6930 
18.5603 

1209.2257 

1705.6637 
29.1053 

561.8263 

776.4073 
27.6377 

1134.7576 

2074.3183 
45.2949 

537.8127 

943.7858 
43.0154 

 

     

 

 
TABLE IV.  SYSTEM PERFORMANCE METRICS FOR IEEE 69-BUS NETWORK WITH THREE LOCATIONS ACROSS 

DIFFERENT LOAD TYPES 

Parameters Industrial Residential Commercial  

PV location @ Size (MW) 0.3454 @ 11 
0.2559 @ 18 

0.3859 @ 11 
0.2979 @ 18 

0.55336 @ 11 
0.39509 @ 18 

 

 1.1350 @ 61 1.3245 @ 61 1.7860 @ 61  

Ploss with PV (kW) 
Ploss base case (kW) 

Ploss reduction (%) 

Qloss with PV (kVAR) 
Qloss base case (kVAR) 

Qloss reduction (%) 

1509.0105 
1882.1189 

19.8239 

695.3511 
856.693 

18.8331 

1201.9619 
1705.6637 

29.5311 

558.6556 
776.4073 

28.0461 

1121.0583 
2074.3183 

45.9553 

531.8368 
943.7858 

43.6486 

 

     

 

 

Fig. 5 Industrial Load Demand vs. Multiple PV Generations 
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Fig. 6 Residential Load Demand vs. Multiple PV Generations 

Fig. 7 Commercial Load Demand vs. Multiple PV Generations 

 

In Fig. 7, the commercial load demand is depicted rising 

steadily in the morning and peaking around midday. This 

pattern closely aligns with peak PV generation times. The 

curves for 1 PV, 2 PVs and 3 PVs in Fig. 7 show that the PV 

systems are particularly effective in matching the commercial 

load during its highest demand periods. This alignment 

underscores the suitability of PV systems for commercial 

operations, where they can significantly reduce energy costs 

and reliance on other power sources during peak hours. 

C. Power Losses 

In Fig. 8, the power loss profile for the industrial load is 

displayed over a 24-hour period. The base case denoted by the 

blue line shows higher power losses throughout the day, 

especially peaking during the evening hours. However, with the 

integration of 1 PV, 2 PVs, and 3 PVs (represented by the 

orange, gray, and yellow lines respectively), the power losses 

are significantly reduced during daylight hours. Notably, the 

differences between the power loss curves for 1 PV, 2 PVs and 

3 PVs are minimal, suggesting that additional PV systems 

beyond the first provide only marginal further reductions in 

power losses for the industrial load. 

Fig. 9 presents the power loss profile for the residential load. 

The base case shows a substantial peak in power losses during 

the midday to early afternoon period which aligns with peak 

solar generation times. The introduction of 1 PV dramatically 

reduces these losses, as seen by the orange line. Further 

reductions are observed with the addition of 2 PVs and 3 PVs 

(gray and yellow lines), especially in the early afternoon and 

late evening. The power loss is nearly eliminated during midday 

when three PV systems are in place, indicating a significant 

impact of PV generation on reducing losses for residential loads 

during periods of high solar irradiance. 

In Fig. 10, the power loss profile for the commercial load is 

depicted. The base case (blue line) shows the highest power 

losses during the morning and midday peaking around 9:00 

AM. However, with the integration of 1 PV, 2 PVs and 3 PVs 

(orange, gray, and yellow lines respectively), the power losses 

are notably reduced during the morning and midday hours. The 

reduction in power losses becomes more pronounced with each 

additional PV system particularly during the hours of peak solar 

generation. This indicates that the commercial load benefits 

significantly from multiple PV systems, with each additional 

PV installation further reducing the overall power losses 

especially during periods of high demand. 

Across all three figures, the integration of PV systems 

results in a noticeable reduction in power losses for industrial, 

residential and commercial loads. While the industrial load 

shows only marginal improvements with additional PV systems 

beyond the first, the residential and commercial loads benefit 

more significantly from multiple PV installations, especially 

during peak generation hours. This trend highlights the 

importance of strategically placing and sizing PV systems to 

optimize power loss reduction based on the specific load 

characteristics. 

 
Fig. 8 Power Loss Profile for Industrial Load with Multiple PVs 

 
Fig. 9 Power Loss Profile for Residential Load with Multiple PVs 
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Fig. 10 Power Loss Profile for Residential Load with Multiple PVs 

D. Voltage Profile 

In Fig. 11, the voltage profile for the industrial load is 

displayed across the bus numbers from 1 to 69. The base case 

represented by the blue line shows a decline in voltage as the 

bus number increases, reaching its lowest point around bus 60 

before recovering slightly. The integration of 1 PV (orange 

line), 2 PVs (gray line) and 3 PVs (yellow line) results in 

noticeable voltage improvements, particularly after bus 25. The 

curves for 2 PVs and 3 PVs are almost identical, indicating that 

adding a third PV provides minimal additional benefit for the 

industrial load's voltage stability. 

Fig. 12 illustrates the voltage profile for the residential load 

across the same bus numbers. The base case (blue line) 

experiences a significant voltage drop, especially between 

buses 25 and 50. The introduction of 1 PV (orange line) slightly 

mitigates this drop, while the addition of 2 PVs (gray line) and 

3 PVs (yellow line) provides further voltage stabilization. 

Notably, the voltage profile for 2 PVs and 3 PVs are quite 

similar, suggesting that for residential loads, two PV systems 

may be sufficient to achieve an optimal voltage profile. 

In Fig. 13, the voltage profile for the commercial load is 

depicted. The base case (blue line) shows a steep decline in 

voltage, particularly around buses 50 to 60. The integration of 

1 PV (orange line), 2 PVs (gray line) and 3 PVs (yellow line) 

results in significant voltage improvements across the network. 

Unlike the industrial and residential loads, the commercial load 

continues to benefit from each additional PV system, as seen by 

the increasing voltage stability with 2 PVs and 3 PVs, although 

the difference between 2 and 3 PVs is less pronounced. 

Across all three figures, the integration of PV systems leads 

to improved voltage profiles for industrial, residential and 

commercial loads. The industrial load shows significant 

improvements after the first PV, with diminishing returns for 

additional PVs. The residential load also benefits from PV 

integration, particularly with two systems, while the 

commercial load consistently improves with each additional PV 

system, indicating that commercial loads may require more 

extensive PV integration to fully stabilize voltage across the 

network. 

 
Fig. 11 Voltage Profile for Industrial Load with Multiple PVs  

 
Fig. 12 Voltage Profile for Residential Load with Multiple PVs  

 
Fig. 13 Voltage Profile for Commercial Load with Multiple PVs  

IV. CONCLUSION 

The integration of multiple photovoltaic (PV) systems into 

the IEEE 69-bus distribution network has demonstrated 

significant improvements in reducing power losses and 

stabilizing voltage profiles across industrial, residential and 

commercial loads. The Coyote Optimization Algorithm (COA) 

proved to be an effective tool in determining the optimal 

placement and sizing of PV systems, leading to enhanced 

network performance. The study highlights that the most 

substantial efficiency gains are achieved when transitioning 

from one to two PV systems, with diminishing returns observed 

upon the addition of a third PV system. Significantly, 

commercial loads benefited the most from PV integration, 

achieving the highest percentage reductions in both active and 

reactive power losses. These results emphasize the critical role 

of strategic PV placement and the efficacy of COA in 
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optimizing renewable energy integration within power 

distribution networks, thereby contributing to a more efficient 

and stable electrical grid. 
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