WHEELIE METER USING PIC MICRO CONTROLLER

Report is presented in partial fulfillment for the award of the Bachelor of Electrical Engineering (Honours) UNIVERSITI TEKNOLOGI MARA

ZANARUDDIN BIN KANDAR Faculty of Electrical Engineering UNIVERSITI TEKNOLOGI MARA 40450 SHAH ALAM, SELANGOR SEPTEMBER 2001

ACKNOWLEDGEMENT

In the name of ALLAH S.W.T, Most Gracious and Most Merciful. Thee do we worship, And Thine aid we seek. All good aspiration's devotions, good expressions and prayers are for ALLAH whose blessing and guidance have helped me throughout the entire project.

I would like to express my sincere gratitude and appreciation to my project advisor, Puan Aisah Mohamed for the providing me with valuable guidance, support, commitment, ideas and constructive comment during the course of this project.

My appreciation also goes to the laboratory technicians in Electronics Lab and Communication Lab for their willingness to help, cooperation and assistance.

My gratitude also to my beloved mother , family members and my highly valued best friends and to all who have been supportive, and for giving me courage, comfort and advice during the course of this project.

ABSTRACT

This project is concerned with the development of a PIC microcontroller and Flux-gate sensing combine to bring the ultimate in wheeled-distance measurement and display. The processor used is PIC16F84. The software is written in PIC language using software development tool, which is call MPLAB. It is a Window based development platform for the Microchip Technology microcontroller families.

The main objective of this project was to build a digital and multifunctional wheelie meter that can use on any vehicle as long as they used a tire from the small one like golf trolley to a bicycle and beyond using the FGM-3 magnetic field sensor, controlled by PIC microcontroller PIC16F84A and display using the intelligent liquid crystal (L.C.D).

TABLE OF CONTENTS

CHAPTER			PAGE
Declaration			i
Acknowledgment			ii
Abstract			iii
Table of Contents			iv-v
List of Figures			vi-viii
List of Tables			ix
List of Abbreviations			x
1	INTRODUCTION		1
	1.0	Introduction	1
	1.1	Project Overview	2.
2	PIC MICROCONTROLLER, FGM-3 SENSOR AND LIQUID CRYSTAL DISPLAY		3
	2.0	PIC Microcontroller PIC 16F84A	3
	2.1	Magnetic Field Sensor FGM-3	7
	2.2	Liquid Crystal Display	12
3	SOFTWARE DESIGN		14
	3.0	Software Description	14
	3.1	The Program Time out	15
	3.2	The Mode Switch Status	16
		3.2.1 MODE 0	16
		3.2.2 MODE 1	17
		3.2.3 MODE 2	17
		3.2.4 MODE 3	18
	3 3	Wheel Size Setting	20

CHAPTER 1

INTRODUCTION

1.0 Introduction

Nowadays, the PIC microcontroller is getting familiar as controlling devices in the electronic field. Why PIC microcontroller? The reason is because PIC microcontroller is multipurpose, multifunctional and can be reprogramable.

The main objective of this project is to build a digital and multifunctional wheelie meter that can use on any vehicle as long as they used a tire from the small one like golf trolley to a bicycle and beyond. In this particular project this wheelie meter can measure of wheel diameters up to about three meters and at speeds of up to about 100 m.p.h. The main parts of the system are microprocessor based PIC16F84A, sensor which used magnetic field sensor and intelligent liquid crystal display (L.C.D.). The sensor will sense the movement of the tire and PIC16F84A will process the data and (L.C.D.) will display the output. The design is simple to build and install but the software is complex.

These designs offer four mode selections for different measurement. The examples for mode selections are:

- 0 Show trip elapsed time and distance in kilometers
- 1 Show current speed and trip average speed in kilometers
- 2 Show trip peak speed and absolute distance in kilometers
- 3 Reset all trip counter to zero