MODELLING OF MOSFETS WITH VARIED CHANNEL LENGTH TO PERFORM A CMOS INVERTER CIRCUIT USING SPICE

This Project Report is presented in partial fulfillment for the award of the Bachelor of Electrical Engineering (Hons.) by

UNIVERSITI TECHNOLOGI MARA

NOOR SYAHIDA BT. ABDULLAH Faculty of Electrical Engineering UNIVERSITI TEKNOLOGI MARA 40450 SHAH ALAM, SELANGOR

ACKNOWLEDGEMENT

In the name of Allah S.W.T, I would like to take this opportunity to express my special gratitude to my project supervisor, Puan Norulhuda Bte. Abdul Rasheid for her guidance, support and advise during the progress of this project.

Apart from that, I would like to thank all the lecturers that have given co-operation, advises and valuables information throughout his study period.

Last but not least, I would like to thanks to all my family and friends for their suggestions, encouragement and moral support. They are the sources of my strength and inspiration.

ABSTRACT

This report describes the characteristics of n-channel enhancement-type and p-channel enhancement-type of MOS Field Effect Transistor (MOSFET) to perform a Complementary MOS (CMOS) inverter. This CMOS inverter will calculate the output of Voltage Transfer Characteristic (VTC) and Propagation Delay time. In order to allow this inverter to function properly, the ideal current – voltage characteristic of MOSFET has been examined using the .MODEL description of PSpice. The analysis has been performed using various channel length from 0.35 microns to 3.5 microns. The simulated results from the PSpice agree with the theory.

TABLE OF CONTENTS

СНАРТЕ	R	PAGE
	DECLARATION	i
	ACKNOWLEDGEMENT	ii
	ABSTRACT	iii
	CONTENTS	iv
	LIST OF FIGURES	vii
	LIST OF TABLES	ix
	LIST OF SYMBOLS	x
	LIST OF ACRONYMS	xii
1	MOS TRANSISTOR	1
	1.1. Introduction	1
	1.2. Basic Structures and Operations of	2
	Enhancement-Type MOSFET	
	1.3. The P-Channel Devices	4
	1.4. The Role of the Substrate – The Body Effect	4
	1.5. Circuit Symbol	5
	1.6. Threshold Voltage	5
	1.6.1. Threshold Voltage Variation with	6
	Device Length and Width	
	1.7. MOSFET Length and Width Definition	7
	1.7.1. Effective or Electrical Channel Length	7
	1.7.2. Effective or Electrical Channel Width	8
	1.8. CMOS Inverter	9
	1.8.1. Circuit Operation	11
	1.8.2. Calculation of V_{IL}	16

CHAPTER 1

MOS TRANSISTOR

1.1 Introduction

MOS Field Effect Transistor (MOSFET) is the fundamental building block of Metal Oxide semiconductor (MOS) digital integrated circuits. In this project, the basic structure and the electrical behavior are examined for NMOS transistor (pull down) and PMOS transistor (pull up) that are used as the primary switching of the driver that controls the operation of the inverter. Consequently, both devices contribute equally to the circuit operation characteristics of the Complementary MOS (CMOS).

Over the past decade, the complexity of MOS Integrated Circuits (IC) has increased at an astonishing rate and this is realized mainly through the reduction of MOS transistor dimension in addition to the improvements in processing. The purpose of this project is to introduce Simulation Program with Integrated Circuit Emphasis (SPICE), a standard circuit simulator that is used to analyze the characteristic of the MOSFET for various *channel length* (L). The Voltage Transfer Characteristic (VTC) and Propagation Delay also can be obtained in the MOSFET characteristic. Also, practical comparison among the different models available in SPICE will be discussed.