UNIVERSITI TEKNOLOGI MARA

MENTAL HEALTH DETECTION BASED ON FACIAL RECOGNITION USING CNN ALGORITHM

MUHAMMAD AZIM AZFAR BIN ROZIHAN

BACHELOR OF COMPUTER SCIENCE (Hons.)

JANUARY 2025

ACKNOWLEDGEMENT

Alhamdulillah, with praise and thanks to Allah for His Almighty and infinite blessings, I was able to complete this research within the given time frame.

First and foremost, I would like to thank my supervisor, Sir Ahmad Nazmi, for his dedicated guidance, advice, and emotional support during my struggles to complete this project report.

I also want to express my deepest gratitude to my parents, whose endless affection, encouragement, and sacrifices have been my greatest sources of strength and inspiration. Their support has been crucial throughout my studies.

Additionally, I extend my heartfelt thanks to my professor, Madam Ummu Fatihah, for her insightful lectures and assistance, which have significantly contributed to my understanding and the successful completion of this project.

Finally, I am immensely grateful to all my dear friends for their unwavering support, encouragement, and companionship. They have made this journey both memorable and meaningful, and their steadfast belief in me has been a powerful motivator.

ABSTRACT

The vital necessity for novel diagnostic approaches emerges because millions around the world suffer from mental health disorders including depression and anxiety. The limitations of traditional diagnostic procedures using clinical interviewing and selfreport methods require improved advanced technical diagnostic approaches. The proposed system uses facial recognition paired with Convolutional Neural Networks (CNN) to analyze faces which identifies three different mental states. Researchers drew data from Kaggle while applying preprocessing techniques for normalization and augmentation before training a CNN model to recognize subtle facial expressions of mental health disorders. The system evaluation showed excellent performance through which the prototype reached over 99% precision rate for certain classification categories. Research findings show CNN technology working with facial recognition methods has great potential to improve mental health diagnosis systems. The research findings highlight the innovative power of this system to transform mental health evaluation through its dependable, noninvasive early identification and ongoing monitoring capabilities which allow healthcare providers to supply precise and timely therapeutic interventions.

TABLE OF CONTENTS

CONTENT

PAGE

SUPERVISOR APPROVAL	i
STUDENT DECLARATION	ii
ACKNOWLEDGEMENT	iii
ABSTRACT	iv
LIST OF FIGURES	viii
LIST OF TABLES	ix
LIST OF ABBREVIATIONS	X
1.1 Background Study	1
1.2 Problem Statement	3
1.3 Objective	4
1.4 Project Scope	4
1.5 Project Significance	5
1.6 Overview of Research Framework	7
1.7 Gantt Chart	8
1.8 Conclusion	8
2.1 Introduction	10
2.2 Facial Recognition	10
2.2.1 The use of Facial Recognition Technology	11
2.2.2 Facial Recognition Technique	11
2.2.2.1 Convolutional Neural Network (CNN)	12
2.2.3 Advantages and Disadvantages of Facial Recognition	12
2.2.4 CNN Architecture	13
2.3 System Model	15
2.4 Implementation of Convolutional Neural Network in Various Problem	15
2.5 Related Works	21
2.6 The Implication of Literature Review	25
2.7 Conclusion	26
3.1 Overview of Research Framework Methodology	27
3.1.1 Detailed of Research Framework	27

3.2 Preliminary Phase	29
3.2.1 Literature Study	29
3.2.2 Data Collection	30
3.2.3 Data Pre-processing	30
3.3 Data Implementation	31
3.3.1 Prototype Architecture	31
3.3.2 Flowchart	33
3.3.3 Interface Design	34
3.3.4 Pseudocode of Selected Algorithm	35
3.3.5 Prototype Implementation	36
3.4 Performance Evaluation	36
3.4.1 Confusion Matrix	37
3.4.1.1 Accuracy, Precision, Recall and F1 Score	37
3.4.2 Plotting	38
3.5 Conclusion	38
4.1 System Logical Design	40
4.1.1 Data Preprocessing	41
4.1.2 CNN Model Training	42
4.1.3 Model Evaluation	42
4.1.4 Deployment and User Interface	43
4.2 Program Code	43
4.2.1 Setting Image Processing Parameters and Determining the Dataset Direction	ectory 43
4.2.2 Dataset Loading and Splitting for Validation and Training	44
4.2.3 Image Normalization Setup	45
4.2.4 Defining and Compiling the CNN Model	46
4.2.5 Model Training	47
4.3 Prototype User Interface	47
4.4 Evaluation Results and Discussion	50
4.4.1 Training and Validation Performance Analysis	51
4.4.2 Model Evaluation on Test Dataset	52
4.4.3 Evaluation of Final Convolutional Neural Network (CNN) Model	53
4.5 Discussion	56
4.6 Conclusion	57
5.1 Summary of the Project	59