
JOURNAL OF ELECTRICAL AND ELECTRONIC SYSTEMS RESEARCH https://doi.org/10.24191/jeesr.v26i1.001

1

Abstract—Efficient and speedy license plate identification is

crucial in vehicle-to-vehicle (V2V) communication scenarios for

applications like traffic management and law enforcement. This

study introduces a method that utilizes cutting-edge deep learning

models to identify and recognize license plates on vehicles. The

YOLOv5n model, renowned for its exceptional detection precision

and efficient design, is utilized for license plate detection. After the

detection phase, the License Plate Recognition Network (LRPNet)

is employed to precisely identify the characters on the detected

license plates. The thorough assessment we conducted evaluates

the performance of this integrated system on public datasets,

showcasing its resilience and effectiveness. This paper provides an

in-depth discussion of the license plate detection and recognition

task through very detailed theoretical derivations and structural

block diagrams combined with experiments. The findings indicate

that the utilization of YOLOv5n and LRPNet shows the high

precision and efficiency of license plate detection and recognition.

Index Terms—License Plate, Object Detection, Recognition, CTC.

I. INTRODUCTION

In recent years, the introduction of Intelligent Transportation

Systems (ITS) has brought about a new era of communication

technologies for vehicles, with a particular focus on V2V

communication. This is an essential element of connected

vehicle technology, allowing vehicles to share critical

information instantly. This emerging discipline holds the

potential to improve the safety of roadways, alleviate traffic

congestion, and facilitate the development of self-driving

vehicles. An essential component of V2V communication is the

precise and effective identification of vehicles on the road,

which is where Automated License Plate Recognition (ALPR)

systems are utilized. [1].

 ALPR systems utilize sophisticated image processing and

deep learning algorithms to identify and interpret vehicle

license plates in different settings. These systems have been

extensively used in traffic enforcement, toll collection, parking

management, and vehicle tracking. ALPR, in the context of

V2V communication, enables smooth vehicle identification,

which is crucial for the transmission of safety-related

information, cooperative driving manoeuvres, and vehicular

networking [2]. The integration of ALPR within V2V

communication frameworks presents unique challenges and

opportunities. On one hand, the dynamic and cluttered road

environment can hinder accurate license plate detection and

recognition, necessitating robust algorithms capable of

handling varying lighting conditions, occlusions, and high

speeds. On the other hand, the continuous stream of data

generated by V2V communication provides a rich source of

context that can be harnessed to enhance ALPR performance.

This paper investigates ALPR technologies, analysing the

underlying mechanisms, present achievements, and prospects.

We explored the technological complexities of ALPR systems

and provided a detailed and in-depth discussion of the

commonly used combination of YOLOv5 and LRPNet for

license plate detection and recognition. However, all previous

literature only examines the task from an experimental

perspective, lacking a theoretical analysis. Instead, the paper

systematically deduces the forward prediction process, the loss

function, and the decoding algorithm, thereby unveiling the

fundamental principles and testing the accuracy of various

decoding algorithms on the China City Parking Dataset. which

will help to design more robust algorithms.

II. RELATED WORKS

In a license plate detection task, the license plate is usually

localized first, and then the characters in the plate are

recognized. The localization methods are generally based on

target detection, while the recognition methods are mainly

based on classification models. Since the license plate detection

model generally runs on mobile devices, the light weight of the

model is a very important indicator.

A. Location Methods

The localization methods usually used are based on target

detection. Object detection is a computer vision technique

essential for identifying and locating instances of objects

within images or videos. This technology enables machines to

classify and determine the positions of various objects,

enhancing applications such as surveillance, autonomous

driving, and V2V communication. In the context of V2V,

object detection can be used to locate and recognize vehicle

license plates, which is crucial for applications like traffic law

enforcement, toll collection, and vehicle identification. Deep

learning has revolutionized object detection, introducing

sophisticated algorithms that can identify objects with

A License Plate Detection and Recognition Method

using YOLOv5n and LPRNet

Wan Xing, Juliana Johari, and Fazlina Ahmat Ruslan*

This manuscript is submitted on 10 June 2024, revised on 26 September 2024
and accepted on 17 October 2024. Xing Wan, Juliana Johari, and Fazlina

Ahmat Ruslan are from School of Electrical Engineering, College of

Engineering, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia.

*Corresponding author

Email address: fazlina419@uitm.edu.my

1985-5389/©️ 2023 The Authors. Published by UiTM Press. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

JOURNAL OF ELECTRICAL AND ELECTRONIC SYSTEMS RESEARCH, VOL.26 APR 2025

2

unprecedented accuracy. Broadly, deep learning-based object

detection models can be categorized into two types: one-stage

detectors and two-stage detectors [3].

Two-stage detectors first propose regions of interest in an

image and then classify and fine-tune the locations of these

proposed regions. Although two-stage detectors, such as Fast

R-CNN, Faster R-CNN and Mask R-CNN [4]–[6], are known

for their high accuracy, they suffer from slower detection

speeds and more complex models, making them less suitable

for real-time V2V detection requirements.

The You Only Look Once (YOLO) models are commonly

used in one-stage algorithms. One-stage detectors, like

YOLOv3, YOLOv6, and YOLOv7 (You Only Look Once)

models, treat object detection as a single regression problem,

simultaneously predicting bounding boxes and class

probabilities directly from the image in one evaluation [7]–[9].

YOLO models have gained substantial popularity for their

balance of speed and accuracy, particularly in applications

demanding real-time performance [10].

Among the various versions, YOLOv5 has the following

advantages: Firstly, the design of YOLOv5 prioritizes high

efficiency and adaptability for industrial applications. It boasts

high detection precision while maintaining computational

efficiency, making it ideal for deployment in real-world

scenarios. Secondly, despite being fast, YOLOv5 does not

compromise detection accuracy, providing the robust results

necessary for tasks such as license plate detection. This

approach significantly enhances speed, making one-stage

detectors more appropriate for real-time V2V applications

where rapid detection is crucial. Fig. 1 depicts the structure of

YOLOv5, comprising a backbone, a neck, and a header.

Fig. 1. The Structures of YOLOv5

Sachin Dhyani et al. used the YOLOv7x algorithm to detect

vehicle license plates and applied EasyOCR to the detected

plates to recognize the text. The model is trained on a

customized dataset containing only Indian vehicle license plates

[11]. Ying Quan et al. designed and developed a GUI widget

for YOLOv8 [12]. Chin-Fa Hsieh et al. completed an intelligent

parking management system by combining automatic license

plate recognition and line function [13]. Shi et al. included an

enhanced channel attention mechanism in the down-sampling

stage of the YOLOv5 algorithm to improve the location of the

license plate [14].

B. Recognition Methods

License plate characters typically comprise both

alphanumeric characters and Chinese characters, making

classification networks well-suited for this purpose. The

recognition task should have the capability to process license

plate characters of different lengths, while the network model

should be designed to be as lightweight as feasible.

Sergey Zherzdev and his colleagues introduced LPRNet, a

comprehensive approach for automatic license plate

recognition that does not require character segmentation [15].

Their methodology operates in real-time and achieves a

recognition accuracy of up to 95% for Chinese license plates

[15]. Wang et al. proposed a multi-task convolutional neural

network for license plate detection and recognition (MTLPR)

with better accuracy and lower computational cost [16]. Huang

et al. developed an innovative license plate recognition network

that can accurately identify and categorize characters and

license plate areas simultaneously [17]. This network includes

an assembly layer that combines the characters to form license

plates and outputs the license plate strings.

Anmol Pattanaik et al. introduced a method called DCTGAN,

which combines Generative Adversarial Networks (GAN) with

a discriminator based on Discrete Cosine Transform (DCT).

This approach aims to enhance the resolution and remove

different types of blur and complexities from license plates [18].

III. METHODS

The flowchart for license plate detection and recognition in

this study is shown in Fig. 2. YOLOv5n locates the license plate

first, and LRPNet then recognizes the characters.

Fig. 2. The License Plate Detection and Recognition.

Wan et al.: A License Plate Detection and Recognition Method using YOLOv5n and LPRNet

3

A. YOLOv5n for License Plate Location

In this research, we focus on leveraging YOLOv5n, the nano

version in the YOLOv5 family, for vehicle license plate

detection. YOLOv5n is particularly advantageous due to its

compact model size and rapid detection speed, which align

perfectly with the stringent real-time performance requirements

of V2V communication systems. Using YOLOv5n, we aim to

maintain a high level of detection accuracy while ensuring swift

processing, thereby meeting the demands of license plate

detection in V2V scenarios.

The backbone of YOLOv5n uses CSPDarknet, which

facilitates feature extraction by passing images through a series

of convolutional layers. Cross-Stage Partial Networks split the

base feature map into two parts; one part passes through a series

of layers and the other bypasses them. These two parts are then

concatenated. This split-and-merge strategy helps enrich the

gradient flow through the network, improving learning and

performance. CSP networks incorporate residual blocks, which

consist of convolutional layers along with shortcut connections.

These blocks facilitate deeper networks, essential for capturing

intricate features without the risk of vanishing gradients.

YOLOv5n utilizes PANet in the neck part to enhance the

feature pyramid by combining feature maps from different

stages. The concept of FPN underpins PANet, enabling the

model to utilize both low-level and high-level features. This is

crucial for detecting objects of varying scales. PANet

introduces additional connections that aggregate feature maps,

improving the propagation of strong features and enhancing

information flow between layers. This results in better object

localization and classification.

The detection head is responsible for predicting the bounding

boxes, objectness scores, and class probabilities from the

aggregated features obtained from the neck. To predict

bounding boxes, the head uses predefined anchor boxes for

different scales. It ensures that the model can detect objects of

various sizes effectively. Sigmoid functions are used to obtain

confidence scores that indicate the presence of an object in the

predicted bounding boxes. Predictions are made for each grid

cell on the feature map, ensuring that objects can be detected

regardless of their position in the image.

Several post-processing techniques refine the results after

obtaining the raw predictions. Non-maximum suppression

(NMS) eliminates redundant bounding boxes that overlap

significantly, keeping only the most confident one. NMS

generally needs to rely on Intersection over Union (IoU) to filter

out the most compliant candidate prediction frames. It

guarantees that a single, accurate bounding box represents each

detected object. Bounding box regression further refines the

coordinates of the bounding boxes, enhancing accuracy.

B. LRPNet

Fig.3 illustrates the overall process of license plate

recognition. The logits output by LRPNet are the probabilities

of characters, which are decoded by Connectionist Temporal

Classification (CTC) [19]. Note that CTC may eventually

decode different outputs into the same prediction result.

Fig. 3. The Process of License Plate Recognition.

The challenges in identifying license plates may be related to

the issue of recognizing sequences, which can be effectively

addressed by modeling them using the LRPNet output

sequence, represented in matrix form. The matrix contains 𝑇

rows and |𝐿|columns, where 𝑇 represents the maximum time

slice and |𝐿| represents the number of characters. The output

sequences are decoded using CTC.

Typically, the RNN appends a softmax layer with a

connection matrix to classify the outputs. The timestep refers to

the dimension of the time sequence, while the number of classes

reflects the dimensions of the category to predict. The length of

the timescale is represented by 𝑡, the length of the hidden layer

is represented by 𝑚 , the output matrix of the RNN is

represented by 𝑅𝑇×𝑚, and the connection layer, which converts

the RNN output dimension 𝑚 to category number 𝑛 , is

represented by 𝑊𝑚×𝑛, as shown in (1).

𝑁𝑤: (𝑅𝑚)𝑇 → (𝑅𝑛)𝑇 (1)

Fig. 4. The Architecture of LPRNet.

As shown in Fig.4, the LRPNet extracts the license plate's

features through a series of convolutional layers and saves the

output features of specific layers. These saved features are

JOURNAL OF ELECTRICAL AND ELECTRONIC SYSTEMS RESEARCH, VOL.26 APR 2025

4

pooled and normalized before being concatenated, and finally

the predicted probabilities of characters on each time slice are

obtained through convolution output.

C. CTC Algorithm

Sequence learning problems often involve multi-to-multi

mapping interactions. CTC addresses the challenge of multi-to-

one mapping by introducing a distinct blank character, denoted

as “_”. Given that the character set to be identified is 𝐿 =
{𝐴, 𝐵, 𝐶, … , 𝑋, 𝑌, 𝑍, 0,1,2, … ,9}, merging the blank characters

into the set defines the extended character set, as shown in (2).

𝑉 = 𝐿 ∪ {𝑏𝑙𝑎𝑛𝑘} (2)

The definition of the operation 𝐵 includes incorporating

identical characters and eliminating blank characters. Given

that the sequence, 𝜋′ initially comprises blank characters and is

decoded to a sequence𝜋 consisting exclusively of characters

from set 𝐿. An example of decoding is shown in Fig. 5, where

all different words are memorized and decoded as "cat".

Fig. 5. An Example CTC decoding.

The sequence length changes from time slice 𝑇′ to 𝑇 and it is

evident that CTC only outputs the final sequence with a length

lower than the input length. Therefore, CTC defines the

transform 𝐵, as shown in (3):

𝐵: 𝑉𝑇′
→ 𝐿𝑇 , 𝑇′ ≤ 𝑇 (3)

Let 𝑙′ ∈ 𝑉2𝑇+1be the sequence with blanks inserted before

and after each character of 𝑙 ∈ 𝐿𝑇. Therefore, there is a one-to-

one mapping 𝐹 between 𝑙′ and 𝑙, as shown in (4).

𝐹: 𝑙′ ∼ 𝑙 (4)

Equation (5) shows the likelihood of output after CTC

converts and merges input 𝑥 into π′.

𝑝(𝑙|𝑥) = ∑ 𝑝(𝜋|𝑥)

𝜋∈𝐵−1(𝑙)

(5)

In this scenario, 𝐵−1(𝑙) denotes the collection of all paths

that have been transformed into the resultant 𝜋. The definition

of 𝑝(𝜋|𝑥) is shown in (6). Here, 𝑦𝜋𝑡=𝑣
𝑡 indicates the probability

of the character 𝑣occurring at time 𝑡, where 𝑣 = 𝜋𝑡. For each

given route 𝜋, the following (6) holds.

𝑝(𝜋|𝑥) = ∏ 𝑦𝜋𝑡=𝑣
𝑡

𝑇′

𝑡=1

, 𝑣 ∈ 𝑉 (6)

The requirements for the (6) are that 𝜋1, 𝜋2, … , 𝜋𝑇′ are

mutually independent. Maximizing the probability allows us to

obtain optimized parameters for LPRNet. However, due to the

large magnitude of |𝐵−1(𝑙)|, the computation of probabilities is

not effective. Therefore, the dynamic planning algorithm

divides the probability calculation into forward probability and

backward probability to reduce computations. Let 𝑙′ be the

sequence with blanks inserted before and after each character

of 𝑙. 𝜋1, 𝜋2, . . . , 𝜋𝑇′ are classified into two groups according to

whether they contain the characters 𝑙𝑘
′ at time 𝑡, as shown in (7).

𝜕𝑝(𝑙′|𝑥)

𝜕𝑤
=

𝜕 ∑ 𝑝(𝜋|𝑥)𝜋∈𝐵{−1}(𝑙)

𝜕𝑤
 (7)

As the second item above is unrelated to 𝑙𝑘
′ , thus (8) holds.

𝜕𝑝(𝑙|𝑥)

𝜕𝑤
=

𝜕𝑝(𝑙′|𝑥)

𝜕𝑤
=

𝜕 ∑ 𝑝(𝜋|𝑥)𝜋∈𝐵−1(𝑙),𝜋𝑡=𝑙𝑘
′

𝜕𝑤
 (8)

As shown in (9), 𝑝𝑓 represents the forward probability, and

𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 denotes the backward probability.

∑ 𝑝(𝜋|𝑥)

𝜋∈𝐵−1(𝑙),𝜋𝑡=𝑙𝑠
′

=
𝑝𝑓(𝑡𝑠, 𝑠) ⋅ 𝑝𝑏(𝑡𝑠, 𝑠)

𝑝(𝜋𝑡 = 𝑙𝑠
′) (9)

The function 𝛼𝑡𝑠(𝑠) denotes the process of decoding 𝜋1:𝑡𝑠 of

𝑡𝑠 timestamps into 𝑠 characters, 𝑙1:𝑠
′ , where 𝑙 is the original

string and 𝑙′ is the CTC decoded string with blank extension

strings between and at the end of each character. In the (10), 𝑡

represents the time slice and 𝑠 represents the preceding 𝑠

characters in the sequence𝑙′.

𝛼𝑡𝑠(𝑠) = ∑ ∏ 𝑦𝜋𝑡
𝑡

𝑡𝑠

𝑡=1𝜋∈𝑉𝑇′
,𝐵(𝜋1:𝑡)=𝑙1:𝑠

′

 (10)

The 𝛼𝑡𝑠(𝑠) denotes the cumulative probability of all forward

paths that have been assigned to the sequence 𝑙1:𝑠
′ up to time 𝑡.

The 𝑦𝜋𝑡
𝑡 represents the probability of character 𝜋𝑡 at time 𝑡. The

sequence can only start from a blank or 𝑙1
′ , and the following

conditions should be met, where 𝑠 ∈ [1, |𝑙′|], as shown in (11),

(12), and (13).

𝛼1(1) = 𝑦𝑏𝑙𝑎𝑛𝑘
1 (11)

Wan et al.: A License Plate Detection and Recognition Method using YOLOv5n and LPRNet

5

𝛼1(2) = 𝑦
𝑙1
′

1
 (12)

𝛼1(𝑠) = 0, ∀2 < 𝑠 ≤ |𝑙′| (13)

If 𝜋𝑡 is blank (case 1) or 𝜋𝑡 is not equal to 𝜋𝑡−2 (case 2), the

recursive process is established, as shown in (14).

𝛼𝑡(𝑠) = (𝛼𝑡−1(𝑠) + 𝛼𝑡−1(𝑠 − 1)) ∗ 𝑦𝑙𝑠
′

𝑡
 (14)

In other cases (case 3), the recursive process is established,

as shown in (15).

𝛼𝑡(𝑠) = (𝛼𝑡−1(𝑠) + 𝛼𝑡−1(𝑠 − 1) + 𝛼𝑡−1(𝑠 − 2)) ∗ 𝑦𝑙𝑠
′

𝑡
 (15)

The iterative examples of case 1, case 2, and case 3 are shown

in Fig. 6.

Fig. 6. The Examples of Forward Process.

When using a forward function, the r must reach either the

last blank or the last non-blank character at time 𝑇′, as shown

in (16).

𝑝(𝑙|𝑥) = 𝛼𝑇′(|𝑙′|) + 𝛼𝑇′(|𝑙′| − 1) (16)

The function 𝛽𝑡(𝑠) denotes the backward probability of the

conversion of 𝜋𝑡:𝑇′ to 𝑙𝑠:|𝑙′|, represented as 𝐵(𝜋𝑡:𝑇′) = 𝑙𝑠:|𝑙′|, as

shown in (17).

𝛽𝑡(𝑠) = ∑ ∏ 𝑦𝜋𝑡
𝑡

𝑇′

𝑡=𝑡𝑠𝜋∈𝑉𝑇′
,𝐵(𝜋𝑡:𝑇′)=𝑙

𝑠:|𝑙′|
′

 (17)

Like the forward probability, the backward probability

satisfies the following (18) – (20).

𝛽𝑇′(|𝑙′|) = 𝑦𝑏𝑙𝑎𝑛𝑘
𝑇′

 (18)

𝛽𝑇′(|𝑙′| − 1) = 𝑦𝑙′
|𝑙′|

𝑇′

 (19)

𝛽𝑇′(𝑠) = 0, ∀𝑠 < |𝑙′| − 1 (20)

If 𝑙𝑠
′ = 𝑏𝑙𝑎𝑛𝑘 or 𝑙𝑠+2

′ = 𝑙𝑠
′ , its recursive relationship is

following (21).

𝛽𝑡(𝑠) = (𝛽𝑡+1(𝑠) + 𝛽𝑡+1(𝑠 + 1)) ∗ 𝑦𝑙𝑠
′

𝑡
 (21)

In other cases, it meets the following (22).

𝛽𝑡(𝑠) = (𝛽𝑡+1(𝑠) + 𝛽𝑡+1(𝑠 + 1) + 𝛽𝑡+1(𝑠 + 2)) ∗ 𝑦𝑙𝑠
′

𝑡
 (22)

The product of forward and backward probabilities can be

expressed as (23).

𝛼𝑡(𝑠)𝛽𝑡(𝑠) = 𝑦𝑙𝑠
′

𝑡 ∑ ∏ 𝑦𝜋𝑡
𝑡

𝑇′

𝑡=1𝜋∈𝐵−1(𝑙),𝜋𝑡=𝑙𝑠
′

(23)

Further, one can get the following (24).

𝛼𝑡(𝑠)𝛽𝑡(𝑠)

𝑦
𝑙𝑠

′
𝑡 = ∑ 𝑝(𝜋|𝑥)

𝜋∈𝐵−1(𝑙),𝜋𝑡=𝑙𝑠
′

 (24)

Iterating over all the positions of 𝑠 yields the likelihood

probability function, as shown in (25).

𝑝(𝑙|𝑥) = ∑ ∑ 𝑝(𝜋|𝑥)

𝜋∈𝐵−1(𝑙),𝜋𝑡=𝑙𝑠
′

|𝑙′|

𝑠=1

= ∑
𝛼𝑡(𝑠)𝛽𝑡(𝑠)

𝑦
𝑙𝑠
′

𝑡

|𝑙′|

𝑠=1

 (25)

Now we must compute the partial derivative of 𝑝(𝑙 ∨ 𝑥) to

𝑦𝑘
𝑡 , and differentiate the likelihood function mentioned earlier.

The condition for 𝑙𝑠
′ to contain 𝑦𝑘

𝑡 is only when 𝑙𝑠
′ is equal to 𝑘.

All other partial derivatives are equal to zero. The string 𝑙𝑠
′ may

contain several instances of the character𝑘. Therefore, the set

of 𝑘 positions in 𝑙𝑠
′ is defined as 𝑝𝑜𝑠(𝑙′, 𝑘) = {𝑠: 𝑙𝑠

′ = 𝑘} .

Equation (25) can be transformed into (26).

𝑝(𝑙|𝑥) = ∑ ∑
𝛼𝑡(𝑠)𝛽𝑡(𝑠)

𝑦𝑘
𝑡

𝑠∈𝑝𝑜𝑠(𝑙′,𝑘)

𝑉

𝑘=1

 (26)

Taking the derivative of the above equation, we get (27).

𝜕𝑝(𝑙|𝑥)

𝜕𝑦𝑘
𝑡 = ∑

𝛼𝑡(𝑠)𝛽𝑡(𝑠)

𝑦𝑘
𝑡 2

𝑠∈𝑝𝑜𝑠(𝑙′ ,𝑘)

 (27)

JOURNAL OF ELECTRICAL AND ELECTRONIC SYSTEMS RESEARCH, VOL.26 APR 2025

6

Therefore, we can express the probability of the log-

likelihood function as (28).

𝜕𝑙𝑛(𝑝(𝑙|𝑥))

𝜕𝑦𝑘
𝑡 =

1

𝑝(𝑙|𝑥)

𝜕𝑝(𝑙|𝑥)

𝜕𝑦𝑘
𝑡

 (28)

The loss function on the training dataset is expressed as (29).

𝐿𝑜𝑠𝑠 = − ∑ 𝑙𝑛(𝑝(𝑙|𝑥))
(𝑥,𝑙)∈𝐷

 (29)

After getting the loss, the gradient of logits can be calculated.

At time 𝑡, the LPRNet outputs, 𝑢𝑘
𝑡 , 𝑘 ∈ [1, 𝑉 = 𝐿′], 1 ≤ 𝑡 ≤ 𝑇′,

which is usually connected to a softmax for normalization, as

shown in (30).

𝑦𝑘
𝑡 =

𝑒𝑢𝑘
𝑡

∑ 𝑒𝑢𝑖
𝑡𝑉

𝑖=1

 (30)

Here the output of softmax is 𝑦𝑘
𝑡 , 𝑘 ∈ [1, 𝑉 = 𝐿′], where the

derivative of the softmax function is shown in (31).

𝜕𝑦𝑗
𝑡

𝑢𝑘
𝑡 = 𝐼(𝑘 = 𝑗) ⋅ 𝑦𝑘

𝑡 ⋅ (1 − 𝑦𝑘
𝑡) − 𝐼(𝑘 ≠ 𝑗) ⋅ 𝑦𝑗

𝑡 ⋅ 𝑦𝑘
𝑡 (31)

Using the chain rule, we can get (32).

𝜕𝑙𝑛𝑝(𝑙|𝑥)

𝜕𝑢𝑘
𝑡 = 𝑦𝑘

𝑡 (
𝜕𝑙𝑛𝑝(𝑙|𝑥)

𝜕𝑦𝑘
𝑡 − ∑

𝜕𝑙𝑛𝑝(𝑙|𝑥)

𝜕𝑦𝑗
𝑡

𝑉

𝑗=1

⋅ 𝑦𝑗
𝑡) (32)

The expression for the derivative of the likelihood

probability is (33).

𝜕𝑝(𝑙|𝑥)

𝜕𝑦𝑗
𝑡 = ∑

𝛼𝑡(𝑠)𝛽𝑡(𝑠)

(𝑦𝑗
𝑡)

2

𝑠∈𝑙𝑎𝑏(𝑙′ ,𝑗)

 (33)

Substituting (33) into (32) and using (25), we can get a more

concise, as shown in (34).

𝜕𝑙𝑛𝑝(𝑙|𝑥)

𝜕𝑢𝑘
𝑡 = 𝑦𝑘

𝑡 ⋅
𝜕𝑙𝑛𝑝(𝑙|𝑥)

𝜕𝑦𝑘
𝑡 − 𝑦𝑘

𝑡 (34))

To avoid numerical underflow, the normalization coefficient

of 𝐶𝑡 for each time slice 𝑡 is calculated, as shown in (35).

𝐶𝑡 = ∑ 𝛼𝑡(𝑠)

𝑠

 (35)

Therefore, the normalized forward probability can be written

as following (36).

𝛼𝑡 =
𝛼𝑡(𝑠)

𝐶𝑡

 (36)

Equation (37) illustrates the need for compensation due to

scaling when calculating the final probability.

𝑙𝑛(𝑝(𝑙|𝑥)) = 𝑙𝑛(𝛼𝑇(|𝑙′|) + 𝛼𝑇(|𝑙′| − 1)) + ∑ 𝑙𝑛(𝐶𝑡)

𝑇

𝑡=1

 (37)

For the backward algorithm, similar scaling can be done, as

shown in (38) and (39).

𝐷𝑡 = ∑ 𝛽𝑡(𝑠)

𝑠

 (38)

𝛽𝑡 =
𝛽𝑡(𝑠)

𝐷𝑡

 (39)

Normalization is necessary for both forward and backward

algorithms, as the value becomes very small as recursion

progresses, leading to value underflow.

D. Greedy Algorithm

Fig. 7. The Greedy Search Algorithm.

The decoding process therefore becomes a search for the

character with the highest probability at each moment, as shown

in Fig. 7. Greedy search only provides the optimal path and can

further optimize the results if many optimal paths exist. Greedy

search has the advantage of being a simple algorithm, but it only

considers one of the paths.

As there is a chance that more than one character path may

Wan et al.: A License Plate Detection and Recognition Method using YOLOv5n and LPRNet

7

be decoded to the same 𝑙 in 𝑝(𝑙|𝑥), we only consider the path

with the highest probability to streamline the computation.

Because of path independence after the CTC decoding

assumption, for a given string, we have the following (40).

𝜋 = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝑙∈(𝐿′)𝑇

(𝑙)) (40)

Greedy search only provides the optimal path and can further

optimize the results if many optimal paths exist. Greedy search

has the advantage of being a simple algorithm, but it only

considers one of the paths. The beam search algorithm can

determine the most efficient number of pathways. Since some

original paths are the same after decoding, CTC must find the

optimal decoding, as shown in Fig. 8.

Fig. 8. The Beam Search Algorithm.

The problem with beam search is that there may be multiple

paths that have the same string after CTC decoding, which

reduces the diversity of the results, whereas the prefix beam

search algorithm allows for the merging of prefixes as the

search progresses, as shown in Fig. 9. However, the complexity

of this algorithm is much higher than the first two algorithms,

so it may not necessarily be able to meet scenarios with speed

requirements.

E. Experiment settings

We assess our methodology using the China City Parking

Dataset (CCPD), which is currently the most extensive publicly

annotated collection of license plate data in China [20]. The

dataset comprises around 250,000 distinct license plate photos

captured under various conditions, including diverse backdrops,

shooting angles, times of day, and illumination levels (refer to

Table 5). The CCPD dataset is partitioned into two subsets:

CCPD2019 and CCPD2020. The former primarily consists of

images of conventional fuel-powered automobiles, while the

latter exclusively comprises images of new energy vehicles.

Since images from CCPD2020 are all new energy vehicles

with 8-digit license plate lengths, to train the model for

variable-length license plates, we added fuel car images with 7-

digit license plate lengths from CCPD2019. Specifically, the

training set consists of 5,769 images of new energy vehicles and

3,000 images of traditional fuel vehicles, while the validation

set consists of 1,001 images of new energy vehicles and 600

images of fuel vehicles.

Fig. 9. Prefix Beam Search Algorithm.

TABLE I. EXPERIMENT SETTINGS

Name Description

Detection Model YOLOv5n.

Recognition Model LRPNet.

Loss Function CTC

Optimal Path Search Greedy Search

Epochs 120.

Learning Rate 0.001

Optimizer RMSProp

Categories 2 (Electrical, gasoline)

Training Dataset 8769 images

Validation Dataset 1601 images

GPU Platform RTX3060

JOURNAL OF ELECTRICAL AND ELECTRONIC SYSTEMS RESEARCH, VOL.26 APR 2025

8

Table Ⅰ shows the experimental parameter settings. The

experiment was conducted on the RTX3060 platform, except

for the FPS and FLOPs parameters, which were run on Intel (R)

Core (TM) i5-8265U CPU platform. In addition, the experiment

ran for 120 epochs because we observed that the model

parameters had already converged beyond 100 epochs.

F. Evaluation Metrics

For the license plate detection model YOLOv5n, the

evaluation metric mean Average Precision (mAP), recall, and

precision. These metrics include precision, recall, mAP, True

Negatives (TN), and True Positives (TP), all of which adhere to

academic standards for rigorous evaluation.

Precision: Precision measures the proportion of correctly

identified positive instances among all instances that the model

predicts as positive. Recall quantifies the ability of the model to

identify all positive instances out of all true positive instances

present in the dataset. The mAP is a comprehensive metric that

averages the precision values across multiple classes and

interpolated recall points. It is particularly useful in multi-class

object detection tasks, providing a single scalar value that

summarizes the model's performance.

TN represents the number of correctly identified negative

instances, where both the model's prediction and the ground

truth indicate that no object of interest is present. While less

emphasized in precision and recall calculations directly, TN

contributes to overall accuracy and is crucial for understanding

the model's behavior regarding non-target objects. TP are

instances where the model correctly identifies the presence and

location of an object of interest, matching the ground truth

annotations. TP is a fundamental component for calculating

precision and recall, highlighting the model's accuracy in

detecting target objects. The evaluation metric used for the

license plate recognition model, LRPNet, is accuracy. A license

plate is accurately recognized only when all the characters are

recognized correctly. In addition, the number of model

parameters as well as speed are the key metrics to focus on for

both license plate detection and recognition.

IV. RESULTS AND DISCUSSION

Due to the powerful model capabilities of YOLOv5n, the

fewer categories in the target dataset, and the non-dense

characteristics of the targets in the license plate dataset, the

model has a higher recall rate on the target dataset, as shown in

Fig. 10. When the confidence threshold is less than 0.4, the

recall for all classes is close to 100%.

The precision of the YOLOv5n model is shown in Fig.11.

Both fuel and new energy vehicles exhibit very high detection

precision when the threshold value exceeds 0.4. However, it

should be noted that recall and precision are usually a pair of

contradictions, which means that in most cases when one is

improved, the other will decrease.

Fig. 10. The Recall of Detection.

Fig. 11. The Precision of Detection using YOLOv5n.

Table Ⅱ compares the NMS time, precision, and recall at

different confidence thresholds when IoU is fixed at 0.6. As the

confidence threshold increases, the model will only output a

small number of those detections with very high confidence,

reducing the processing time of NMS. When the confidence

level is between 0.001 and 0.01, precision and recall keep stable

at 0.994 and 0.984, respectively. When the confidence level

rises to 0.5, the precision increases to 0.996, and recall

decreases to 0.981, which is because fewer high-quality

candidate bounding boxes are beneficial to the improvement of

the precision, and at the same time there is a possibility of lower

leakage of detection.

TABLE II. PERFORMANCE AT DIFFERENT CONFIDENCE

THRESHOLDS

Conf IoU NMS Time Precision Recall

0.001 0.6 0.9ms 0.994 0.984

0.005 0.6 0.8ms 0.994 0.984

0.01
0.6 0.7ms 0.994 0.984

0.5 0.6 0.7ms 0.996 0.981

Wan et al.: A License Plate Detection and Recognition Method using YOLOv5n and LPRNet

9

Table Ⅲ shows that precision and recall do not change when

the IoU threshold is varied from 0.4 to 0.75. However, when it

is further increased to 0.95, precision decreases from 0.994 to

0.903 and recall decreases from 0.984 to 0.954. Too high IoU

causes part of the objects that originally belong to the same

category to be judged as belonging to other categories, resulting

in misjudgments and a decrease in precision. Also, raising the

IoU threshold means that more real targets may not be matched,

which leads to missed detections and lower recall. The IoU

threshold has no significant effect on NMS improvement.

Based on the analysis of the above two aspects, an IoU

threshold of 0.6 and a confidence threshold of 0.001 are

relatively good choices.

TABLE III. PERFORMANCE AT DIFFERENT IOU THRESHOLDS

Conf IoU NMS Time Precision Recall

0.001 0.4 0.9ms 0.994 0.984

0.001 0.6 0.9ms 0.994 0.984

0.001
0.75 0.9ms 0.994 0.984

0.001 0.95 0.9ms 0.903 0.954

For license plate detection, the first thing is to ensure a higher

recall because the consequences of missed detection are more

serious than a slight decrease in accuracy. In fact, YOLOv5 is

the most widely used model produced by industry and is very

suitable for industrial applications. YOLOv5n is the lightest

model in the YOLO series, with the fastest inference speed, and

is very suitable for license plate detection with high real-time

requirements.

In fact, the recall of YOLOv5 on the CCPD dataset has

reached about 98.4%, and the accuracy exceeds 99%. If you

want to further improve recall, you can use a higher-order

model in the YOLOv5 series, such as YOLOv5m, which is a

medium-sized model. The P-R curve of detection on the CCPD

dataset is shown in Figure 12. The values of precision and recall

are close to 100% at the same time, which shows that tasks such

as license plate detection, precision and recall are not difficult.

What is important is the model's image reasoning time, so it is

necessary to achieve the best balance between model indicators

and reasoning speed. This can be achieved by constantly

adjusting the model parameters to find the most suitable model

for the target set.

Since the recall and precision of YOLOv5m in license plate

detection are close to 100%, it is not necessary to use more

advanced models, such as YOLOv6 and YOLOv7. One reason

is that it is difficult to further improve the progress of these

more complex models, and the other is that these models lack

sufficient industrial applications, and their stability needs

further verification, which is most important for industrial

implementation. Figure 13 displays some test results on the

validation set using YOLOv5n, showing a high overall

recognition performance. The effect of license plate detection

on the LPRNet model is shown in Fig. 14.

Fig. 12. The Precision of Detection using YOLOv5n.

Fig. 13. Some Detection Examples of Validation Dataset.

JOURNAL OF ELECTRICAL AND ELECTRONIC SYSTEMS RESEARCH, VOL.26 APR 2025

10

Fig. 14. Some Recognition Examples of Validation Dataset.

Table Ⅳ shows that the method achieved the speed of 0.014s

and Floating-Point Operations Per second (FLOPs) of 147.79M

using 8769 training images. The result above shows that the

model is only about 82% accurate when the greedy decoding

algorithm is used and based on 8769 training data. However, in

practice, we can improve the performance of the model by using

more training data to train LRPNet separately.

TABLE IV. RESULTS OF RECOGNITION USING 8769 TRAINING IMAGES

Metric Result

Accuracy 82.4%

Speed 0.014s

FLOPs
147.79M

PARAMs 446.98K

Table V below shows the performance of different decoding

algorithms with 16775 training data.

TABLE V. RESULTS OF RECOGNITION USING 16775 TRAINING IMAGES

Decoding

Algorithm
Accuracy Speed Num of Beams

Greedy 92% 0.014s /

Beam Search 92% 0.018 5

Prefix Beam

Search 92% 0.043 5

Prefix Beam

Search
92% 0.072 12

Prefix Beam

Search
92% 0.16 30

No matter which decoding algorithm model is used, there is

a significant improvement in performance, approximately close

to ten percentage points. However, the use of Beam and Prefix

Beam did not improve the accuracy of Greedy, probably

because for the license plate dataset with 68 classifications,

more training data is required to get better decoding

performance. In addition to LRPNet, another widely used

model is the generalized text recognition model EasyOCR,

which has gained wide application in the academic and

engineering fields of license plate recognition [11], [21]–[24].

The model employs Bidirectional Long Short-Term Memory

(BiLSTM) and CTC, and we used the CCPD dataset to train this

model. The results of our test comparing it with LRPNet on the

CCPD dataset are shown in Table Ⅵ.

TABLE VI. PERFORMANCE OF LRPNET AND EASYOCR PERFORMANCE

Model TP TN1 TN2 Accuracy

LRPNet 1319 140 142 82.4%

EasyOCR 1317 102 182 82.2%

In this experiment, two models, LPRNet and EasyOCR, were

evaluated for license plate recognition. The primary metric for

comparison is the number of true positives (TP), which

represents accurate predictions of license plate characters.

LPRNet achieved 1319 TP, outperforming EasyOCR's 1317 TP.

Additionally, LPRNet recorded 140 instances where the

predicted license plate length did not match the actual length

(TN1), compared to EasyOCR's 102 instances. Furthermore,

LPRNet exhibited 142 cases of correct length predictions but

incorrect characters (TN2), while EasyOCR showed 182 such

instances. The overall accuracy for LPRNet was 82.4%, slightly

higher than EasyOCR's 82.2%. These results indicate that

LPRNet not only provided a marginally higher accuracy but

also demonstrated superior performance in maintaining correct

license plate length compared to EasyOCR. This result also

shows that the two models have relatively similar performance.

We suggest that the primary emphasis of license plate

recognition research needs to be on model optimization for

reduced weight and improved compatibility with mobile and

CPU platforms. Moreover, the license plate identification in

adverse weather conditions warrants further investigation.

V. CONCLUSIONS

This paper proposes, trains, and validates a license plate

detection and recognition strategy utilizing YOLOv5n,

LRPNet, and CTC on the CCPD dataset. The paper thoroughly

examines the mathematical foundations and architecture of

YOLOv5 and LRPNet concerning license plate detection and

recognition, both conceptually and in terms of network

structure. We evaluate and assess the detection efficacy of

YOLOv5n and YOLOv5m on the CCPD dataset, analyzing it

through several measures like detection speed and accuracy.

Furthermore, we evaluated the recognition outcomes of

Wan et al.: A License Plate Detection and Recognition Method using YOLOv5n and LPRNet

11

LRPNet models utilizing various decoding techniques and

contrasted them with another widely employed license plate

recognition model, EasyOCR. It is important to acknowledge

that the intricate detection of license plates in complex climatic

environments remains a future endeavor.

ACKNOWLEDGMENT

The Authors would also like to thank and acknowledge the

Faculty of Electrical Engineering Universiti Teknologi MARA

Shah Alam for their support.

REFERENCES

[1] Q. Zheng and J. Wang, “A Novel Method for Extending V2V System,”
in Proceedings of the 3rd International Conference on Vision, Image and

Signal Processing, New York, NY, USA, 2020, pp. 1–6.

[2] X. Pan, S. Li, R. Li, and N. Sun, “A Hybrid Deep Learning Algorithm
for the License Plate Detection and Recognition in Vehicle-to-Vehicle

Communications,” IEEE Transactions on Intelligent Transportation Sys-
tems, vol. 23, no. 12, pp. 23447–23458, Dec.2022.

[3] L. Jiao, F. Zhang, F. Liu, S. Yang, L. Li, Z. Feng, and R. Qu, “A Survey

of Deep Learning-based Object Detection,” IEEE Access, vol. 7, pp.
128837–128868, 2019.

[4] R. Girshick, “Fast R-CNN,” in 2015 IEEE International Conference on

Computer Vision (ICCV), 2015, pp. 1440–1448.
[5] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-

Time Object Detection with Region Proposal Networks,” IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, vol. 39, no. 6, pp.
1137–1149, Jun.2017.

[6] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN.” arXiv,

Jan. 24, 2018.
[7] J. Redmon and A. Farhadi, “YOLOv3: An Incremental Improvement.”

arXiv, Apr. 08, 2018.

[8] C. Li, L. Li, H. Jiang, K. Weng, Y. Geng, L. Li, Z. Ke, Q. Li, M. Cheng,

W. Nie, Y. Li, B. Zhang, Y. Liang, L. Zhou, X. Xu, X. Chu, X. Wei, and

X. Wei, “YOLOv6: A Single-Stage Object Detection Framework for In-

dustrial Applications.” arXiv, Sep. 07, 2022.
[9] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “YOLOv7: Trainable

bag-of-freebies sets new state-of-the-art for real-time object detectors.”

arXiv, Jul. 06, 2022.
[10] W. Xing, M. R. Sultan Mohd, J. Johari, and F. Ahmat Ruslan, “A review

on object detection algorithms based deep learning methods / Wan Xing

... [et al.],” Journal of Electrical and Electronic Systems Research
(JEESR), vol. 23, no. 1, pp. 1–13, Oct.2023.

[11] S. Dhyani and V. Kumar, “Real-Time License Plate Detection and

Recognition System using YOLOv7x and EasyOCR,” in 2023 Global
Conference on Information Technologies and Communications

(GCITC), Dec. 2023, pp. 1–5.

[12] Y. Quan, P. Wang, Y. Wang, and X. Jin, “GUI-Based YOLOv8 License
Plate Detection System Design,” in 2023 5th International Conference

on Control and Robotics (ICCR), Nov. 2023, pp. 156–161.

[13] C.-F. Hsieh, C.-Z. Lin, Z.-Z. Li, and C.-H. Cho, “Automatic Vehicle Li-
cense Plate Recognition Based on YOLO v4 for Smart Parking Manage-

ment System,” in 2022 IEEE 11th Global Conference on Consumer Elec-

tronics (GCCE), Oct. 2022, pp. 905–906.
[14] H. Shi and D. Zhao, “License Plate Recognition System Based on Im-

proved YOLOv5 and GRU,” IEEE Access, vol. 11, pp. 10429–10439,

2023.
[15] S. Zherzdev and A. Gruzdev, “LPRNet: License Plate Recognition via

Deep Neural Networks.” arXiv, Jun. 27, 2018.

[16] W. Wang, J. Yang, M. Chen, and P. Wang, “A Light CNN for End-to-
End Car License Plates Detection and Recognition,” IEEE Access, vol.

7, pp. 173875–173883, 2019.

[17] Q. Huang, Z. Cai, and T. Lan, “A New Approach for Character Recog-
nition of Multi-Style Vehicle License Plates,” IEEE Transactions on

Multimedia, vol. 23, pp. 3768–3777, 2021.

[18] A. Pattanaik and R. C. Balabantaray, “Enhancement of license plate
recognition performance using Xception with Mish activation function,”

Multimed Tools Appl, vol. 82, no. 11, pp. 16793–16815, May2023.

[19] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Connectionist
temporal classification: labelling unsegmented sequence data with recur-

rent neural networks,” in Proceedings of the 23rd international confer-

ence on Machine learning, New York, NY, USA, 2006, pp. 369–376.
[20] Z. Xu, W. Yang, A. Meng, N. Lu, H. Huang, C. Ying, and L. Huang,

“Towards End-to-End License Plate Detection and Recognition: A Large

Dataset and Baseline,” in Computer Vision – ECCV 2018, Cham, 2018,
pp. 261–277.

[21] A. D. Iriawan and A. Sunyoto, “Automatic License Plate Recognition

System in Indonesia Using YOLOv8 and EasyOCR Algorithm,” in 2023
6th International Conference on Information and Communications Tech-

nology (ICOIACT), Nov. 2023, pp. 384–388.

[22] D. R. Vedhaviyassh, R. Sudhan, G. Saranya, M. Safa, and D. Arun,
“Comparative Analysis of EasyOCR and TesseractOCR for Automatic

License Plate Recognition using Deep Learning Algorithm,” in 2022 6th

International Conference on Electronics, Communication and Aerospace
Technology, Dec. 2022, pp. 966–971.

[23] E. Mythili, S. Vanithamani, R. Kanna P, R. G, K. Gayathri, and R.

Harsha, “AMLPDS: An Automatic Multi-Regional License Plate Detec-
tion System based on EasyOCR and CNN Algorithm,” in 2023 2nd In-

ternational Conference on Edge Computing and Applications

(ICECAA), Jul. 2023, pp. 667–673.
[24] S. S. Patil, S. H. Patil, A. M. Pawar, M. S. Bewoor, A. K. Kadam, U. C.

Patkar, K. Wadare, and S. Sharma, “Vehicle Number Plate Detection us-

ing YoloV8 and EasyOCR,” in 2023 14th International Conference on
Computing Communication and Networking Technologies (ICCCNT),

Jul. 2023, pp. 1–4.

