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Abstract—Efficient and speedy license plate identification is 

crucial in vehicle-to-vehicle (V2V) communication scenarios for 

applications like traffic management and law enforcement. This 

study introduces a method that utilizes cutting-edge deep learning 

models to identify and recognize license plates on vehicles. The 

YOLOv5n model, renowned for its exceptional detection precision 

and efficient design, is utilized for license plate detection. After the 

detection phase, the License Plate Recognition Network (LRPNet) 

is employed to precisely identify the characters on the detected 

license plates.  The thorough assessment we conducted evaluates 

the performance of this integrated system on public datasets, 

showcasing its resilience and effectiveness. This paper provides an 

in-depth discussion of the license plate detection and recognition 

task through very detailed theoretical derivations and structural 

block diagrams combined with experiments. The findings indicate 

that the utilization of YOLOv5n and LRPNet shows the high 

precision and efficiency of license plate detection and recognition. 

 

Index Terms—License Plate, Object Detection, Recognition, CTC. 

 

I. INTRODUCTION 

In recent years, the introduction of Intelligent Transportation 

Systems (ITS) has brought about a new era of communication 

technologies for vehicles, with a particular focus on V2V 

communication. This is an essential element of connected 

vehicle technology, allowing vehicles to share critical 

information instantly. This emerging discipline holds the 

potential to improve the safety of roadways, alleviate traffic 

congestion, and facilitate the development of self-driving 

vehicles. An essential component of V2V communication is the 

precise and effective identification of vehicles on the road, 

which is where Automated License Plate Recognition (ALPR) 

systems are utilized. [1]. 

 ALPR systems utilize sophisticated image processing and 

deep learning algorithms to identify and interpret vehicle 

license plates in different settings. These systems have been 

extensively used in traffic enforcement, toll collection, parking 

management, and vehicle tracking. ALPR, in the context of 

V2V communication, enables smooth vehicle identification, 

which is crucial for the transmission of safety-related 

information, cooperative driving manoeuvres, and vehicular 

networking [2]. The integration of ALPR within V2V 

communication frameworks presents unique challenges and 

opportunities. On one hand, the dynamic and cluttered road 

environment can hinder accurate license plate detection and 

recognition, necessitating robust algorithms capable of 

handling varying lighting conditions, occlusions, and high 

speeds. On the other hand, the continuous stream of data 

generated by V2V communication provides a rich source of 

context that can be harnessed to enhance ALPR performance. 

This paper investigates ALPR technologies, analysing the 

underlying mechanisms, present achievements, and prospects. 

We explored the technological complexities of ALPR systems 

and provided a detailed and in-depth discussion of the 

commonly used combination of YOLOv5 and LRPNet for 

license plate detection and recognition. However, all previous 

literature only examines the task from an experimental 

perspective, lacking a theoretical analysis. Instead, the paper 

systematically deduces the forward prediction process, the loss 

function, and the decoding algorithm, thereby unveiling the 

fundamental principles and testing the accuracy of various 

decoding algorithms on the China City Parking Dataset. which 

will help to design more robust algorithms. 

II. RELATED WORKS 

In a license plate detection task, the license plate is usually 

localized first, and then the characters in the plate are 

recognized. The localization methods are generally based on 

target detection, while the recognition methods are mainly 

based on classification models. Since the license plate detection 

model generally runs on mobile devices, the light weight of the 

model is a very important indicator. 

 

A.  Location Methods 

The localization methods usually used are based on target 

detection. Object detection is a computer vision technique 

essential for identifying and locating instances of objects 

within images or videos. This technology enables machines to 

classify and determine the positions of various objects, 

enhancing applications such as surveillance, autonomous 

driving, and V2V communication. In the context of V2V, 

object detection can be used to locate and recognize vehicle 

license plates, which is crucial for applications like traffic law 

enforcement, toll collection, and vehicle identification. Deep 

learning has revolutionized object detection, introducing 

sophisticated algorithms that can identify objects with 
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unprecedented accuracy. Broadly, deep learning-based object 

detection models can be categorized into two types: one-stage 

detectors and two-stage detectors [3]. 

Two-stage detectors first propose regions of interest in an 

image and then classify and fine-tune the locations of these 

proposed regions. Although two-stage detectors, such as Fast 

R-CNN, Faster R-CNN and Mask R-CNN [4]–[6], are known 

for their high accuracy, they suffer from slower detection 

speeds and more complex models, making them less suitable 

for real-time V2V detection requirements. 

The You Only Look Once (YOLO) models are commonly 

used in one-stage algorithms. One-stage detectors, like 

YOLOv3, YOLOv6, and YOLOv7 (You Only Look Once) 

models, treat object detection as a single regression problem, 

simultaneously predicting bounding boxes and class 

probabilities directly from the image in one evaluation [7]–[9]. 

YOLO models have gained substantial popularity for their 

balance of speed and accuracy, particularly in applications 

demanding real-time performance [10]. 

Among the various versions, YOLOv5 has the following 

advantages: Firstly, the design of YOLOv5 prioritizes high 

efficiency and adaptability for industrial applications. It boasts 

high detection precision while maintaining computational 

efficiency, making it ideal for deployment in real-world 

scenarios. Secondly, despite being fast, YOLOv5 does not 

compromise detection accuracy, providing the robust results 

necessary for tasks such as license plate detection. This 

approach significantly enhances speed, making one-stage 

detectors more appropriate for real-time V2V applications 

where rapid detection is crucial. Fig. 1 depicts the structure of 

YOLOv5, comprising a backbone, a neck, and a header. 

 

 
Fig. 1.  The Structures of YOLOv5 

 

Sachin Dhyani et al. used the YOLOv7x algorithm to detect 

vehicle license plates and applied EasyOCR to the detected 

plates to recognize the text. The model is trained on a 

customized dataset containing only Indian vehicle license plates 

[11]. Ying Quan et al. designed and developed a GUI widget 

for YOLOv8 [12]. Chin-Fa Hsieh et al. completed an intelligent 

parking management system by combining automatic license 

plate recognition and line function [13]. Shi et al. included an 

enhanced channel attention mechanism in the down-sampling 

stage of the YOLOv5 algorithm to improve the location of the 

license plate [14]. 

 

B. Recognition Methods 

License plate characters typically comprise both 

alphanumeric characters and Chinese characters, making 

classification networks well-suited for this purpose. The 

recognition task should have the capability to process license 

plate characters of different lengths, while the network model 

should be designed to be as lightweight as feasible.  

Sergey Zherzdev and his colleagues introduced LPRNet, a 

comprehensive approach for automatic license plate 

recognition that does not require character segmentation [15]. 

Their methodology operates in real-time and achieves a 

recognition accuracy of up to 95% for Chinese license plates 

[15]. Wang et al. proposed a multi-task convolutional neural 

network for license plate detection and recognition (MTLPR) 

with better accuracy and lower computational cost [16]. Huang 

et al. developed an innovative license plate recognition network 

that can accurately identify and categorize characters and 

license plate areas simultaneously [17]. This network includes 

an assembly layer that combines the characters to form license 

plates and outputs the license plate strings.  

Anmol Pattanaik et al. introduced a method called DCTGAN, 

which combines Generative Adversarial Networks (GAN) with 

a discriminator based on Discrete Cosine Transform (DCT). 

This approach aims to enhance the resolution and remove 

different types of blur and complexities from license plates [18].  

III. METHODS 

The flowchart for license plate detection and recognition in 

this study is shown in Fig. 2. YOLOv5n locates the license plate 

first, and LRPNet then recognizes the characters. 

 

 
Fig. 2. The License Plate Detection and Recognition. 

 

 



Wan et al.: A License Plate Detection and Recognition Method using YOLOv5n and LPRNet 
 

3 

 

A. YOLOv5n for License Plate Location 

In this research, we focus on leveraging YOLOv5n, the nano 

version in the YOLOv5 family, for vehicle license plate 

detection. YOLOv5n is particularly advantageous due to its 

compact model size and rapid detection speed, which align 

perfectly with the stringent real-time performance requirements 

of V2V communication systems. Using YOLOv5n, we aim to 

maintain a high level of detection accuracy while ensuring swift 

processing, thereby meeting the demands of license plate 

detection in V2V scenarios. 

The backbone of YOLOv5n uses CSPDarknet, which 

facilitates feature extraction by passing images through a series 

of convolutional layers. Cross-Stage Partial Networks split the 

base feature map into two parts; one part passes through a series 

of layers and the other bypasses them. These two parts are then 

concatenated. This split-and-merge strategy helps enrich the 

gradient flow through the network, improving learning and 

performance. CSP networks incorporate residual blocks, which 

consist of convolutional layers along with shortcut connections. 

These blocks facilitate deeper networks, essential for capturing 

intricate features without the risk of vanishing gradients. 

YOLOv5n utilizes PANet in the neck part to enhance the 

feature pyramid by combining feature maps from different 

stages. The concept of FPN underpins PANet, enabling the 

model to utilize both low-level and high-level features. This is 

crucial for detecting objects of varying scales. PANet 

introduces additional connections that aggregate feature maps, 

improving the propagation of strong features and enhancing 

information flow between layers. This results in better object 

localization and classification. 

The detection head is responsible for predicting the bounding 

boxes, objectness scores, and class probabilities from the 

aggregated features obtained from the neck. To predict 

bounding boxes, the head uses predefined anchor boxes for 

different scales. It ensures that the model can detect objects of 

various sizes effectively. Sigmoid functions are used to obtain 

confidence scores that indicate the presence of an object in the 

predicted bounding boxes. Predictions are made for each grid 

cell on the feature map, ensuring that objects can be detected 

regardless of their position in the image. 

Several post-processing techniques refine the results after 

obtaining the raw predictions. Non-maximum suppression 

(NMS) eliminates redundant bounding boxes that overlap 

significantly, keeping only the most confident one. NMS 

generally needs to rely on Intersection over Union (IoU) to filter 

out the most compliant candidate prediction frames. It 

guarantees that a single, accurate bounding box represents each 

detected object. Bounding box regression further refines the 

coordinates of the bounding boxes, enhancing accuracy. 

 

B. LRPNet 

Fig.3 illustrates the overall process of license plate 

recognition. The logits output by LRPNet are the probabilities 

of characters, which are decoded by Connectionist Temporal 

Classification (CTC) [19]. Note that CTC may eventually 

decode different outputs into the same prediction result. 

 

 
Fig. 3. The Process of License Plate Recognition. 

 

The challenges in identifying license plates may be related to 

the issue of recognizing sequences, which can be effectively 

addressed by modeling them using the LRPNet output 

sequence, represented in matrix form. The matrix contains 𝑇 

rows and |𝐿|columns, where 𝑇 represents the maximum time 

slice and |𝐿| represents the number of characters. The output 

sequences are decoded using CTC. 

Typically, the RNN appends a softmax layer with a 

connection matrix to classify the outputs. The timestep refers to 

the dimension of the time sequence, while the number of classes 

reflects the dimensions of the category to predict. The length of 

the timescale is represented by 𝑡, the length of the hidden layer 

is represented by 𝑚 , the output matrix of the RNN is 

represented by 𝑅𝑇×𝑚, and the connection layer, which converts 

the RNN output dimension 𝑚  to category number 𝑛 , is 

represented by 𝑊𝑚×𝑛, as shown in (1). 

 

𝑁𝑤: (𝑅𝑚)𝑇 → (𝑅𝑛)𝑇 (1) 

 

 
Fig. 4.  The Architecture of LPRNet. 

 

As shown in Fig.4, the LRPNet extracts the license plate's 

features through a series of convolutional layers and saves the 

output features of specific layers. These saved features are 
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pooled and normalized before being concatenated, and finally 

the predicted probabilities of characters on each time slice are 

obtained through convolution output. 

 

C. CTC Algorithm 

Sequence learning problems often involve multi-to-multi 

mapping interactions. CTC addresses the challenge of multi-to-

one mapping by introducing a distinct blank character, denoted 

as “_”. Given that the character set to be identified is 𝐿 =
{𝐴, 𝐵, 𝐶, … , 𝑋, 𝑌, 𝑍, 0,1,2, … ,9},  merging the blank characters 

into the set defines the extended character set, as shown in (2). 

 

𝑉 = 𝐿 ∪ {𝑏𝑙𝑎𝑛𝑘} (2) 

 

The definition of the operation 𝐵  includes incorporating 

identical characters and eliminating blank characters. Given 

that the sequence, 𝜋′ initially comprises blank characters and is 

decoded to a sequence𝜋  consisting exclusively of characters 

from set 𝐿. An example of decoding is shown in Fig. 5, where 

all different words are memorized and decoded as "cat". 

 

 
Fig. 5. An Example CTC decoding. 

 

The sequence length changes from time slice 𝑇′ to 𝑇 and it is 

evident that CTC only outputs the final sequence with a length 

lower than the input length. Therefore, CTC defines the 

transform 𝐵, as shown in (3): 

 

𝐵: 𝑉𝑇′
→ 𝐿𝑇 , 𝑇′ ≤ 𝑇 (3) 

 

Let 𝑙′ ∈ 𝑉2𝑇+1be the sequence with blanks inserted before 

and after each character of 𝑙 ∈ 𝐿𝑇. Therefore, there is a one-to-

one mapping 𝐹 between 𝑙′ and 𝑙, as shown in (4). 

 

𝐹: 𝑙′ ∼ 𝑙 (4) 

 

Equation (5) shows the likelihood of output after CTC 

converts and merges input 𝑥 into π′.  

 

𝑝(𝑙|𝑥) = ∑ 𝑝(𝜋|𝑥)

𝜋∈𝐵−1(𝑙)

 
(5) 

  

In this scenario, 𝐵−1(𝑙) denotes the collection of all paths 

that have been transformed into the resultant 𝜋. The definition 

of 𝑝(𝜋|𝑥) is shown in (6). Here, 𝑦𝜋𝑡=𝑣
𝑡  indicates the probability 

of the character 𝑣occurring at time 𝑡, where 𝑣 = 𝜋𝑡. For each 

given route 𝜋, the following (6) holds. 

 

𝑝(𝜋|𝑥) = ∏ 𝑦𝜋𝑡=𝑣
𝑡

𝑇′

𝑡=1

, 𝑣 ∈ 𝑉 (6) 

 

The requirements for the (6) are that 𝜋1, 𝜋2, … , 𝜋𝑇′  are 

mutually independent. Maximizing the probability allows us to 

obtain optimized parameters for LPRNet. However, due to the 

large magnitude of |𝐵−1(𝑙)|, the computation of probabilities is 

not effective. Therefore, the dynamic planning algorithm 

divides the probability calculation into forward probability and 

backward probability to reduce computations. Let 𝑙′ be the 

sequence with blanks inserted before and after each character 

of 𝑙. 𝜋1, 𝜋2, . . . , 𝜋𝑇′ are classified into two groups according to 

whether they contain the characters 𝑙𝑘
′  at time 𝑡, as shown in (7). 

 

𝜕𝑝(𝑙′|𝑥)

𝜕𝑤
=

𝜕 ∑ 𝑝(𝜋|𝑥)𝜋∈𝐵{−1}(𝑙)

𝜕𝑤
 (7) 

 

As the second item above is unrelated to 𝑙𝑘
′ , thus (8) holds. 

 

𝜕𝑝(𝑙|𝑥)

𝜕𝑤
=

𝜕𝑝(𝑙′|𝑥)

𝜕𝑤
=

𝜕 ∑ 𝑝(𝜋|𝑥)𝜋∈𝐵−1(𝑙),𝜋𝑡=𝑙𝑘
′

𝜕𝑤
 (8) 

 

As shown in (9), 𝑝𝑓 represents the forward probability, and 

𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑  denotes the backward probability. 

 

∑ 𝑝(𝜋|𝑥)

𝜋∈𝐵−1(𝑙),𝜋𝑡=𝑙𝑠
′

=
𝑝𝑓(𝑡𝑠, 𝑠) ⋅ 𝑝𝑏(𝑡𝑠, 𝑠)

𝑝(𝜋𝑡 = 𝑙𝑠
′ )  (9) 

 

The function 𝛼𝑡𝑠(𝑠) denotes the process of decoding 𝜋1:𝑡𝑠 of 

𝑡𝑠  timestamps into 𝑠  characters, 𝑙1:𝑠
′ , where 𝑙 is the original 

string and 𝑙′ is the CTC decoded string with blank extension 

strings between and at the end of each character. In the (10), 𝑡 

represents the time slice and 𝑠  represents the preceding 𝑠 

characters in the sequence𝑙′. 

 

𝛼𝑡𝑠(𝑠) = ∑ ∏ 𝑦𝜋𝑡
𝑡

𝑡𝑠

𝑡=1𝜋∈𝑉𝑇′
,𝐵(𝜋1:𝑡)=𝑙1:𝑠

′

 (10) 

 

The 𝛼𝑡𝑠(𝑠) denotes the cumulative probability of all forward 

paths that have been assigned to the sequence 𝑙1:𝑠
′  up to time 𝑡. 

The 𝑦𝜋𝑡
𝑡  represents the probability of character 𝜋𝑡 at time 𝑡. The 

sequence can only start from a blank or 𝑙1
′ , and the following 

conditions should be met, where 𝑠 ∈ [1, |𝑙′|], as shown in (11), 

(12), and (13). 

 

𝛼1(1) = 𝑦𝑏𝑙𝑎𝑛𝑘
1  (11) 
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𝛼1(2) = 𝑦
𝑙1
′

1
 (12) 

 

𝛼1(𝑠) = 0, ∀2 < 𝑠 ≤ |𝑙′| (13) 

 

If 𝜋𝑡 is blank (case 1) or 𝜋𝑡 is not equal to 𝜋𝑡−2 (case 2), the 

recursive process is established, as shown in (14).  

 

𝛼𝑡(𝑠) = (𝛼𝑡−1(𝑠) + 𝛼𝑡−1(𝑠 − 1)) ∗ 𝑦𝑙𝑠
′

𝑡
 (14) 

 

In other cases (case 3), the recursive process is established, 

as shown in (15). 

 

𝛼𝑡(𝑠) = (𝛼𝑡−1(𝑠) + 𝛼𝑡−1(𝑠 − 1) + 𝛼𝑡−1(𝑠 − 2)) ∗ 𝑦𝑙𝑠
′

𝑡
 (15) 

 

The iterative examples of case 1, case 2, and case 3 are shown 

in Fig. 6. 

 

 
Fig. 6.  The Examples of Forward Process. 

 

When using a forward function, the r must reach either the 

last blank or the last non-blank character at time 𝑇′, as shown 

in (16).  

 

𝑝(𝑙|𝑥) = 𝛼𝑇′(|𝑙′|) + 𝛼𝑇′(|𝑙′| − 1) (16) 

 

The function 𝛽𝑡(𝑠) denotes the backward probability of the 

conversion of 𝜋𝑡:𝑇′ to 𝑙𝑠:|𝑙′|, represented as 𝐵(𝜋𝑡:𝑇′) = 𝑙𝑠:|𝑙′|, as 

shown in (17). 

 

𝛽𝑡(𝑠) = ∑ ∏ 𝑦𝜋𝑡
𝑡

𝑇′

𝑡=𝑡𝑠𝜋∈𝑉𝑇′
,𝐵(𝜋𝑡:𝑇′)=𝑙

𝑠:|𝑙′|
′

 (17) 

 

Like the forward probability, the backward probability 

satisfies the following (18) – (20). 

 

𝛽𝑇′(|𝑙′|) = 𝑦𝑏𝑙𝑎𝑛𝑘
𝑇′

 (18) 

 

𝛽𝑇′(|𝑙′| − 1) = 𝑦𝑙′
|𝑙′|

𝑇′

 (19) 

 

𝛽𝑇′(𝑠) = 0, ∀𝑠 < |𝑙′| − 1 (20) 

 

If 𝑙𝑠
′ = 𝑏𝑙𝑎𝑛𝑘  or 𝑙𝑠+2

′ = 𝑙𝑠
′ , its recursive relationship is 

following (21). 

 

𝛽𝑡(𝑠) = (𝛽𝑡+1(𝑠) + 𝛽𝑡+1(𝑠 + 1)) ∗ 𝑦𝑙𝑠
′

𝑡
 (21) 

 

In other cases, it meets the following (22). 

 

𝛽𝑡(𝑠) = (𝛽𝑡+1(𝑠) + 𝛽𝑡+1(𝑠 + 1) + 𝛽𝑡+1(𝑠 + 2)) ∗ 𝑦𝑙𝑠
′

𝑡
 (22) 

 

The product of forward and backward probabilities can be 

expressed as (23). 

 

𝛼𝑡(𝑠)𝛽𝑡(𝑠) = 𝑦𝑙𝑠
′

𝑡 ∑ ∏ 𝑦𝜋𝑡
𝑡

𝑇′

𝑡=1𝜋∈𝐵−1(𝑙),𝜋𝑡=𝑙𝑠
′

 

(23) 

 
Further, one can get the following (24). 

 

𝛼𝑡(𝑠)𝛽𝑡(𝑠)

𝑦
𝑙𝑠

′
𝑡 = ∑ 𝑝(𝜋|𝑥)

𝜋∈𝐵−1(𝑙),𝜋𝑡=𝑙𝑠
′

 (24) 

 
Iterating over all the positions of 𝑠  yields the likelihood 

probability function, as shown in (25). 

 

𝑝(𝑙|𝑥) = ∑ ∑ 𝑝(𝜋|𝑥)

𝜋∈𝐵−1(𝑙),𝜋𝑡=𝑙𝑠
′

|𝑙′|

𝑠=1

= ∑
𝛼𝑡(𝑠)𝛽𝑡(𝑠)

𝑦
𝑙𝑠
′

𝑡

|𝑙′|

𝑠=1

 (25) 

 

Now we must compute the partial derivative of 𝑝(𝑙 ∨ 𝑥) to 

𝑦𝑘
𝑡 , and differentiate the likelihood function mentioned earlier. 

The condition for 𝑙𝑠
′  to contain 𝑦𝑘

𝑡  is only when 𝑙𝑠
′  is equal to 𝑘. 

All other partial derivatives are equal to zero. The string 𝑙𝑠
′  may 

contain several instances of the character𝑘. Therefore, the set 

of  𝑘  positions in 𝑙𝑠
′  is defined as 𝑝𝑜𝑠(𝑙′, 𝑘) = {𝑠: 𝑙𝑠

′ = 𝑘} . 

Equation (25) can be transformed into (26). 

 

𝑝(𝑙|𝑥) = ∑ ∑
𝛼𝑡(𝑠)𝛽𝑡(𝑠)

𝑦𝑘
𝑡

𝑠∈𝑝𝑜𝑠(𝑙′,𝑘)

𝑉

𝑘=1

 (26) 

 

Taking the derivative of the above equation, we get (27). 

𝜕𝑝(𝑙|𝑥)

𝜕𝑦𝑘
𝑡 = ∑

𝛼𝑡(𝑠)𝛽𝑡(𝑠)

𝑦𝑘
𝑡 2

𝑠∈𝑝𝑜𝑠(𝑙′ ,𝑘)

 (27) 
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Therefore, we can express the probability of the log-

likelihood function as (28). 

 

𝜕𝑙𝑛(𝑝(𝑙|𝑥))

𝜕𝑦𝑘
𝑡 =

1

𝑝(𝑙|𝑥)

𝜕𝑝(𝑙|𝑥)

𝜕𝑦𝑘
𝑡

 (28) 

 

The loss function on the training dataset is expressed as (29). 

 

𝐿𝑜𝑠𝑠 = − ∑ 𝑙𝑛(𝑝(𝑙|𝑥))
(𝑥,𝑙)∈𝐷

 (29) 

 

After getting the loss, the gradient of logits can be calculated. 

At time 𝑡, the LPRNet outputs, 𝑢𝑘
𝑡 , 𝑘 ∈ [1, 𝑉 = 𝐿′], 1 ≤ 𝑡 ≤ 𝑇′, 

which is usually connected to a softmax for normalization, as 

shown in (30). 

 

𝑦𝑘
𝑡 =

𝑒𝑢𝑘
𝑡

∑ 𝑒𝑢𝑖
𝑡𝑉

𝑖=1

 (30) 

 

Here the output of softmax is 𝑦𝑘
𝑡 , 𝑘 ∈ [1, 𝑉 = 𝐿′], where the 

derivative of the softmax function is shown in (31). 

 

𝜕𝑦𝑗
𝑡

𝑢𝑘
𝑡 = 𝐼(𝑘 = 𝑗) ⋅ 𝑦𝑘

𝑡 ⋅ (1 − 𝑦𝑘
𝑡 ) − 𝐼(𝑘 ≠ 𝑗) ⋅ 𝑦𝑗

𝑡 ⋅ 𝑦𝑘
𝑡  (31) 

 

Using the chain rule, we can get (32). 

 

𝜕𝑙𝑛𝑝(𝑙|𝑥)

𝜕𝑢𝑘
𝑡 = 𝑦𝑘

𝑡 (
𝜕𝑙𝑛𝑝(𝑙|𝑥)

𝜕𝑦𝑘
𝑡 − ∑

𝜕𝑙𝑛𝑝(𝑙|𝑥)

𝜕𝑦𝑗
𝑡

𝑉

𝑗=1

⋅ 𝑦𝑗
𝑡) (32) 

 

The expression for the derivative of the likelihood 

probability is (33). 

 

𝜕𝑝(𝑙|𝑥)

𝜕𝑦𝑗
𝑡 = ∑

𝛼𝑡(𝑠)𝛽𝑡(𝑠)

(𝑦𝑗
𝑡)

2

𝑠∈𝑙𝑎𝑏(𝑙′ ,𝑗)

 (33)  

 

Substituting (33) into (32) and using (25), we can get a more 

concise, as shown in (34). 

 

𝜕𝑙𝑛𝑝(𝑙|𝑥)

𝜕𝑢𝑘
𝑡 = 𝑦𝑘

𝑡 ⋅
𝜕𝑙𝑛𝑝(𝑙|𝑥)

𝜕𝑦𝑘
𝑡 − 𝑦𝑘

𝑡  (34) ) 

 

To avoid numerical underflow, the normalization coefficient 

of 𝐶𝑡 for each time slice 𝑡 is calculated, as shown in (35). 

 

𝐶𝑡 = ∑ 𝛼𝑡(𝑠)

𝑠

 (35) 

 

Therefore, the normalized forward probability can be written 

as following (36). 

 

𝛼𝑡 =
𝛼𝑡(𝑠)

𝐶𝑡

 (36) 

 

Equation (37) illustrates the need for compensation due to 

scaling when calculating the final probability. 

 

𝑙𝑛(𝑝(𝑙|𝑥)) = 𝑙𝑛(𝛼𝑇(|𝑙′|) + 𝛼𝑇(|𝑙′| − 1)) + ∑ 𝑙𝑛(𝐶𝑡)

𝑇

𝑡=1

 (37) 

 

For the backward algorithm, similar scaling can be done, as 

shown in (38) and (39). 

 

𝐷𝑡 = ∑ 𝛽𝑡(𝑠)

𝑠

 (38) 

 

𝛽𝑡 =
𝛽𝑡(𝑠)

𝐷𝑡

 (39) 

 

Normalization is necessary for both forward and backward 

algorithms, as the value becomes very small as recursion 

progresses, leading to value underflow. 

 

D. Greedy Algorithm 

 
Fig. 7.  The Greedy Search Algorithm. 

 

The decoding process therefore becomes a search for the 

character with the highest probability at each moment, as shown 

in Fig. 7. Greedy search only provides the optimal path and can 

further optimize the results if many optimal paths exist. Greedy 

search has the advantage of being a simple algorithm, but it only 

considers one of the paths.  

As there is a chance that more than one character path may 
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be decoded to the same 𝑙 in 𝑝(𝑙|𝑥), we only consider the path 

with the highest probability to streamline the computation. 

Because of path independence after the CTC decoding 

assumption, for a given string, we have the following (40). 

 

𝜋 = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝑙∈(𝐿′)𝑇

(𝑙)) (40) 

 

Greedy search only provides the optimal path and can further 

optimize the results if many optimal paths exist. Greedy search 

has the advantage of being a simple algorithm, but it only 

considers one of the paths. The beam search algorithm can 

determine the most efficient number of pathways. Since some 

original paths are the same after decoding, CTC must find the 

optimal decoding, as shown in Fig. 8. 

 

 
Fig. 8. The Beam Search Algorithm. 

 

The problem with beam search is that there may be multiple 

paths that have the same string after CTC decoding, which 

reduces the diversity of the results, whereas the prefix beam 

search algorithm allows for the merging of prefixes as the 

search progresses, as shown in Fig. 9. However, the complexity 

of this algorithm is much higher than the first two algorithms, 

so it may not necessarily be able to meet scenarios with speed 

requirements. 

 

E. Experiment settings 

We assess our methodology using the China City Parking 

Dataset (CCPD), which is currently the most extensive publicly 

annotated collection of license plate data in China [20]. The 

dataset comprises around 250,000 distinct license plate photos 

captured under various conditions, including diverse backdrops, 

shooting angles, times of day, and illumination levels (refer to 

Table 5). The CCPD dataset is partitioned into two subsets: 

CCPD2019 and CCPD2020. The former primarily consists of 

images of conventional fuel-powered automobiles, while the 

latter exclusively comprises images of new energy vehicles. 

Since images from CCPD2020 are all new energy vehicles 

with 8-digit license plate lengths, to train the model for 

variable-length license plates, we added fuel car images with 7-

digit license plate lengths from CCPD2019. Specifically, the 

training set consists of 5,769 images of new energy vehicles and 

3,000 images of traditional fuel vehicles, while the validation 

set consists of 1,001 images of new energy vehicles and 600 

images of fuel vehicles. 

 

 

 
Fig. 9.  Prefix Beam Search Algorithm. 

TABLE I.  EXPERIMENT SETTINGS 

Name  Description 

Detection Model  YOLOv5n. 

Recognition Model  LRPNet. 

Loss Function  CTC 

Optimal Path Search  Greedy Search 

Epochs  120. 

Learning Rate  0.001 

Optimizer  RMSProp 

Categories  2 (Electrical, gasoline) 

Training Dataset  8769 images 

Validation Dataset  1601 images 

GPU Platform  RTX3060 
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Table Ⅰ shows the experimental parameter settings. The 

experiment was conducted on the RTX3060 platform, except 

for the FPS and FLOPs parameters, which were run on Intel (R) 

Core (TM) i5-8265U CPU platform. In addition, the experiment 

ran for 120 epochs because we observed that the model 

parameters had already converged beyond 100 epochs. 

 

F. Evaluation Metrics 

For the license plate detection model YOLOv5n, the 

evaluation metric mean Average Precision (mAP), recall, and 

precision. These metrics include precision, recall, mAP, True 

Negatives (TN), and True Positives (TP), all of which adhere to 

academic standards for rigorous evaluation. 

Precision: Precision measures the proportion of correctly 

identified positive instances among all instances that the model 

predicts as positive. Recall quantifies the ability of the model to 

identify all positive instances out of all true positive instances 

present in the dataset. The mAP is a comprehensive metric that 

averages the precision values across multiple classes and 

interpolated recall points. It is particularly useful in multi-class 

object detection tasks, providing a single scalar value that 

summarizes the model's performance.  

TN represents the number of correctly identified negative 

instances, where both the model's prediction and the ground 

truth indicate that no object of interest is present. While less 

emphasized in precision and recall calculations directly, TN 

contributes to overall accuracy and is crucial for understanding 

the model's behavior regarding non-target objects. TP are 

instances where the model correctly identifies the presence and 

location of an object of interest, matching the ground truth 

annotations. TP is a fundamental component for calculating 

precision and recall, highlighting the model's accuracy in 

detecting target objects. The evaluation metric used for the 

license plate recognition model, LRPNet, is accuracy. A license 

plate is accurately recognized only when all the characters are 

recognized correctly. In addition, the number of model 

parameters as well as speed are the key metrics to focus on for 

both license plate detection and recognition. 

IV. RESULTS AND DISCUSSION 

Due to the powerful model capabilities of YOLOv5n, the 

fewer categories in the target dataset, and the non-dense 

characteristics of the targets in the license plate dataset, the 

model has a higher recall rate on the target dataset, as shown in 

Fig. 10. When the confidence threshold is less than 0.4, the 

recall for all classes is close to 100%. 

The precision of the YOLOv5n model is shown in Fig.11. 

Both fuel and new energy vehicles exhibit very high detection 

precision when the threshold value exceeds 0.4. However, it 

should be noted that recall and precision are usually a pair of 

contradictions, which means that in most cases when one is 

improved, the other will decrease. 

 

 

 
Fig. 10. The Recall of Detection. 

 

 

 
Fig. 11. The Precision of Detection using YOLOv5n. 

 

Table Ⅱ compares the NMS time, precision, and recall at 

different confidence thresholds when IoU is fixed at 0.6. As the 

confidence threshold increases, the model will only output a 

small number of those detections with very high confidence, 

reducing the processing time of NMS. When the confidence 

level is between 0.001 and 0.01, precision and recall keep stable 

at 0.994 and 0.984, respectively. When the confidence level 

rises to 0.5, the precision increases to 0.996, and recall 

decreases to 0.981, which is because fewer high-quality 

candidate bounding boxes are beneficial to the improvement of 

the precision, and at the same time there is a possibility of lower 

leakage of detection. 

TABLE II. PERFORMANCE AT DIFFERENT CONFIDENCE 

THRESHOLDS 

Conf IoU NMS Time Precision Recall 

0.001 0.6 0.9ms 0.994 0.984 

0.005 0.6 0.8ms 0.994 0.984 

0.01 
0.6 0.7ms 0.994 0.984 

0.5 0.6 0.7ms 0.996 0.981 
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Table Ⅲ shows that precision and recall do not change when 

the IoU threshold is varied from 0.4 to 0.75. However, when it 

is further increased to 0.95, precision decreases from 0.994 to 

0.903 and recall decreases from 0.984 to 0.954. Too high IoU 

causes part of the objects that originally belong to the same 

category to be judged as belonging to other categories, resulting 

in misjudgments and a decrease in precision. Also, raising the 

IoU threshold means that more real targets may not be matched, 

which leads to missed detections and lower recall. The IoU 

threshold has no significant effect on NMS improvement. 

Based on the analysis of the above two aspects, an IoU 

threshold of 0.6 and a confidence threshold of 0.001 are 

relatively good choices. 

TABLE III. PERFORMANCE AT DIFFERENT IOU THRESHOLDS 

Conf IoU NMS Time Precision Recall 

0.001 0.4 0.9ms 0.994 0.984 

0.001 0.6 0.9ms 0.994 0.984 

0.001 
0.75 0.9ms 0.994 0.984 

0.001 0.95 0.9ms 0.903 0.954 

 

For license plate detection, the first thing is to ensure a higher 

recall because the consequences of missed detection are more 

serious than a slight decrease in accuracy. In fact, YOLOv5 is 

the most widely used model produced by industry and is very 

suitable for industrial applications. YOLOv5n is the lightest 

model in the YOLO series, with the fastest inference speed, and 

is very suitable for license plate detection with high real-time 

requirements. 

In fact, the recall of YOLOv5 on the CCPD dataset has 

reached about 98.4%, and the accuracy exceeds 99%. If you 

want to further improve recall, you can use a higher-order 

model in the YOLOv5 series, such as YOLOv5m, which is a 

medium-sized model. The P-R curve of detection on the CCPD 

dataset is shown in Figure 12. The values of precision and recall 

are close to 100% at the same time, which shows that tasks such 

as license plate detection, precision and recall are not difficult. 

What is important is the model's image reasoning time, so it is 

necessary to achieve the best balance between model indicators 

and reasoning speed. This can be achieved by constantly 

adjusting the model parameters to find the most suitable model 

for the target set. 

Since the recall and precision of YOLOv5m in license plate 

detection are close to 100%, it is not necessary to use more 

advanced models, such as YOLOv6 and YOLOv7. One reason 

is that it is difficult to further improve the progress of these 

more complex models, and the other is that these models lack 

sufficient industrial applications, and their stability needs 

further verification, which is most important for industrial 

implementation. Figure 13 displays some test results on the 

validation set using YOLOv5n, showing a high overall 

recognition performance. The effect of license plate detection 

on the LPRNet model is shown in Fig. 14.  

 

 

 

Fig. 12. The Precision of Detection using YOLOv5n. 

 

 

 
Fig. 13. Some Detection Examples of Validation Dataset. 
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Fig. 14. Some Recognition Examples of Validation Dataset. 

 

Table Ⅳ shows that the method achieved the speed of 0.014s 

and Floating-Point Operations Per second (FLOPs) of 147.79M 

using 8769 training images. The result above shows that the 

model is only about 82% accurate when the greedy decoding 

algorithm is used and based on 8769 training data. However, in 

practice, we can improve the performance of the model by using 

more training data to train LRPNet separately.  

 

TABLE IV. RESULTS OF RECOGNITION USING 8769 TRAINING IMAGES 

Metric Result 

Accuracy 82.4% 

Speed 0.014s 

FLOPs 
147.79M 

PARAMs 446.98K 

 

Table V below shows the performance of different decoding 

algorithms with 16775 training data.  

TABLE V. RESULTS OF RECOGNITION USING 16775 TRAINING IMAGES 

Decoding 

Algorithm 
Accuracy Speed Num of Beams 

Greedy 92% 0.014s / 

Beam Search 92% 0.018 5 

Prefix Beam 

Search 92% 0.043 5 

Prefix Beam 

Search 
92% 0.072 12 

Prefix Beam 

Search 
92% 0.16 30 

 

No matter which decoding algorithm model is used, there is 

a significant improvement in performance, approximately close 

to ten percentage points. However, the use of Beam and Prefix 

Beam did not improve the accuracy of Greedy, probably 

because for the license plate dataset with 68 classifications, 

more training data is required to get better decoding 

performance. In addition to LRPNet, another widely used 

model is the generalized text recognition model EasyOCR, 

which has gained wide application in the academic and 

engineering fields of license plate recognition [11], [21]–[24]. 

The model employs Bidirectional Long Short-Term Memory 

(BiLSTM) and CTC, and we used the CCPD dataset to train this 

model. The results of our test comparing it with LRPNet on the 

CCPD dataset are shown in Table Ⅵ.  

 

TABLE VI. PERFORMANCE OF LRPNET AND EASYOCR PERFORMANCE 

Model TP TN1 TN2 Accuracy 

LRPNet 1319 140 142 82.4% 

EasyOCR 1317 102 182 82.2% 

 

In this experiment, two models, LPRNet and EasyOCR, were 

evaluated for license plate recognition. The primary metric for 

comparison is the number of true positives (TP), which 

represents accurate predictions of license plate characters. 

LPRNet achieved 1319 TP, outperforming EasyOCR's 1317 TP. 

Additionally, LPRNet recorded 140 instances where the 

predicted license plate length did not match the actual length 

(TN1), compared to EasyOCR's 102 instances. Furthermore, 

LPRNet exhibited 142 cases of correct length predictions but 

incorrect characters (TN2), while EasyOCR showed 182 such 

instances. The overall accuracy for LPRNet was 82.4%, slightly 

higher than EasyOCR's 82.2%. These results indicate that 

LPRNet not only provided a marginally higher accuracy but 

also demonstrated superior performance in maintaining correct 

license plate length compared to EasyOCR. This result also 

shows that the two models have relatively similar performance. 

We suggest that the primary emphasis of license plate 

recognition research needs to be on model optimization for 

reduced weight and improved compatibility with mobile and 

CPU platforms. Moreover, the license plate identification in 

adverse weather conditions warrants further investigation. 

 

V. CONCLUSIONS 

This paper proposes, trains, and validates a license plate 

detection and recognition strategy utilizing YOLOv5n, 

LRPNet, and CTC on the CCPD dataset. The paper thoroughly 

examines the mathematical foundations and architecture of 

YOLOv5 and LRPNet concerning license plate detection and 

recognition, both conceptually and in terms of network 

structure. We evaluate and assess the detection efficacy of 

YOLOv5n and YOLOv5m on the CCPD dataset, analyzing it 

through several measures like detection speed and accuracy. 

Furthermore, we evaluated the recognition outcomes of 
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LRPNet models utilizing various decoding techniques and 

contrasted them with another widely employed license plate 

recognition model, EasyOCR. It is important to acknowledge 

that the intricate detection of license plates in complex climatic 

environments remains a future endeavor. 
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