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Abstract—This project is to design and analyze of sequence 

generator module using Eulerian Path Algorithm for DNA 

fragment assembly. Mostly, “overlap – layout - consensus” method 

is used to assemble DNA, but a new system need to be introduced 

to overcome problems in assembling long DNA sequence in this 

method. Euler Path Algorithm is used since it has better 

assembling ability especially in assembling long sequence. The 

objective of this project is to design the DNA sequence generator 

modules using the Eulerian Path Algorithm. This project is 

designed based on speed optimization. DNA fragment assembly is 

a process reassembling fragment of DNA like a puzzle into several 

other sequence. DNA fragment assembly consists of two process, 

assembling and alignment. For FPGA design, synthesis and 

simulation is done using the Xilinx Vivado software to obtain the 

RTL schematic as well as the waveform of the module. In ASIC 

design, Synopsys tools is used for analysis the project. Tools used 

are VCS for re verifying the design for further process in ASIC 

design, DC for resynthesize and remodeling the design with 

constraints and lastly static timing analysis using PT for advanced 

static timing analysis. The average area for normal-compile using 

DC is 413,309.1um2 while for ultra-compile is 83,096.06um2. The 

average dynamic power and leakage power for normal compile is 

159.0887uW and 1.8045mW, while for “compile ultra” is 99.09uW 

and 263.54uW. From comparison with timing analysis in DC and 

STA in PT, this system can be run on minimum 600ns period. 

Based on the result obtained, this project has been successfully 

designed and simulated on FPGA and ASIC design flow. 

Keywords-Sequence Generator Module; Eulerian Path 

Algorithm; DNA Fragment Assembly; DNASGM 

I.  INTRODUCTION 

DNA fragment assembly is a process to assemble the DNA 
genome and reconstruct it. The demands on this process 
nowadays not only focus on medical field, it also covers in 
investigation, inheritance, food and many more fields. Few 
system had already been designed for DNA fragment assembly. 
Most of this systems take a lot times to process the DNA 
sequence and some even take days. A good system need to be 
cost effective, high reliability, high processing speed as well as 
low power consumption. Hence, the DNA sequence generator 
module (DNASGM) will be designed focusing on speed 
optimization. 

Every living beings has Deoxyribonucleic acid (DNA) inside 
their body. This large macromolecule forms the genes. The 
DNA form is long and double helix. The sequence in DNA 
contains information of the DNA carrier, and throughout of the 
carrier body nearly all the DNA sequence is same [1]. The 
human DNA contains a nitrogenous organic bases, called 
nucleotides. In DNA, there are four types of nucleotides, each 
can be represented with a single letter. The nucleotides are 
Adenine (A), Cytosine (C), Guanine (G) and Thymine (T) [2]. 
A single DNA strand will contain thousands of these 
nucleotides. In the DNA, the helix is complimentary of each 
other [1]. Each nucleotides has it owns pair, adenine (A) with 
thymine (T) and cytosine (C) with guanine (G). By using this 
four letter, fragment assembly can be conducted faster compared 
by assembling using the 20 types of amino acid [2].  

There are various techniques to be used for DNA 
sequencing. The first one is sequencing by Hybridization. 
Hybridization is a technique which the short sequences of 
nucleotides DNA is contacted with target DNA sequence [3]. 
This method used synthetic fragment of DNA in probe which 
contain 8 to 30 nucleotides. The target DNA sequence will 
hybridize to the probe when it is complement to each other [4]. 
The second technique for sequencing DNA is shotgun 
sequencing. Using this technique, sequence is produced from 
composite of overlaps small fragment sequence [5]. For this 
technique, two approach can be used. For the first approach, the 
DNA sequence is break into segments with random length [9]. 
All this fragment is then assembled by overlapping [6]. The 
fragments obtain from this approach can be assembled using 
Euler Path Algorithm, de Brujin graph as well as overlap-layout-
consensus [6]. Another approach of Shotgun sequencing is by 
breaking the DNA sequence into longer length fragment [6]. 
From this long fragment, it will be break into smaller length 
fragment [6]. This smaller fragment is then assembled using 
various technique. This approach has better speed processing 
compared to previous approach [6]. Asides from Hybridization 
and Shotgun sequencing technique, another method is presented 
recently, which is High-throughput sequencing technologies [7]. 

There are many types of DNA fragment assembly algorithm. 
A studies had already been conducted to compare between the 
methods [8]. One of the DNA fragment assembly technique is 
“overlap-layout-consensus” [8]. This technique consists of three 



phase. The first phase is Overlap Phase [8]. This phase 
objectives is to find the overlapping fragments. In this phase, the 
best or longest path of the sequence will be determined. The 
second phase is Layout Phase [8]. The order of fragment is 
determined by overlapping the fragment. This is the phase which 
combination of the alignment will be obtained. Lastly, the third 
phase is Consensus Phase [8]. This phase will determine the 
sequence from layout obtain in Layout Phase. Another method 
for assembling is using de Brujin graph [9] [10]. This graph 
consist of vertices and edges. It is dependent to l – 1. The l is the 
length of the edges. Euler path algorithm is another method in 
assembling the DNA fragment [11] [12] [13]. This algorithm is 
a better approach compare to “overlap-layout-consensus” 
approach [11] [12] [13]. This project module is design using 
Verilog language based on Euler path algorithm. The design is 
analyzed and simulated first before continuing into ASIC design 
flow.  

II. EULERIAN PATH ALGORITHM 

The Euler path algorithm involves constructing the DNA 
sequences into de Brujin graph [14] first before applying the 
Euler path [15].  

This algorithm originates from Leonard Euler, a Swiss 
Mathematician, in 1736. This algorithm is related to the 
problems of seven bridge of Konigsberg [16]. In this problem, 
there are seven bridge connecting between islands at the City of 
Konigsberg. A route need to be determine which the road only 
pass through each bridge once. [17]. 

There are two types of Euler, Euler path and Euler circuit. 
Both of this types uses the edges only once. The different is 
Euler path starts and ends at different vertices. While for Euler 
circuit, it starts and ends at the same vertices. Since the DNA 
sequence starting and ending point is already determined, Euler 
path is used for DNA sequencing [18]. 

Before constructing the de Brujin graph, the k value need to 
first identified. For this paper, k = 4 is used in the module. Once 
the k is identified, the DNA sequence is separated to k-1 sized 
vertices. All the vertices is connected with k sized edges. All the 
vertices will be aligned into a node graph with the edges 
respectively. Eulerian cycle is then applied to the graph [18]. All 
possible sequence is then generated. 

                                   

Figure 1 DNA sequence divided to edges and vertices diagram. 

In Figure 1, a DNA sequence of 7 letter width is used to 
apply to de Brujin graph. First, k-mers is set to 4. Edges is 4 letter 
width and the vertices is 3 letter width. In a single edge, it consist 
of 2 vertices. 2 edges share one common vertice. 

 

Figure 2 De Brujin graph with Euler path. 

In Figure 2, the vertices obtain from Figure 1 is rearranged 
to de Brujin graph. The common vertices is tied together, leaving 
only 4 vertices in the graph. Two sequence can be obtained from 
Figure 2, which is ACTCTCTA and ACTCTA. 

III. METHODOLOGY 

The DNASGM will be go through process of FPGA and 

ASIC designing. Before designing, the specification of this 

module need to be identify and illustrate into block diagram. By 

using block diagram, all the important features of this modules 

can be review effectively before continuing into the FPGA and 

ASIC design flow. 

A. Proposed Technique 

To construct the DNASGM, the Assembly module will 

implement the hybrid technique of de Brujin graph and Euler 

Path Algorithm. The inputs need to be converted to edges and 

vertices. To avoid producing repetition output, a module is 

needed to check common between the edges. In this project, the 

Assembly module does not implement the Euler algorithm 

completely. Instead, all possible types of de Brujin graph with 

Euler path applied to the graph is first identified. From the 

identified graph, all possible output can be produced. This 

produced output is placed inside the coding. By doing this 

method, the outputs of the Assembly module will be many. A 

selector module will be added to select only the possible outputs 

for the input sequence to be outputted out of DNASGM. 

B. DNASGM Block Diagram 

 

Figure 3 Block diagram of DNASGM 

Figure 3 shows the block diagram of DNASGM. This system 
has three inputs and four outputs. The inputs consist of clock, 

ACT CTC 

TCT 

TCA 



reset and port for inputting DNA sequence. For this system, the 
DNAstrand input can only take seven letters of DNA sequence. 
For one letter, it is represented with three bits binary number, 
which total up to 21 bits binary. Table I shows the representation 
of bit for each letter. The outputs consist of out1, out2, out3 and 
out4. The port out1 will output the original DNA sequence for 
checking purpose. The ports out2, out3 and out4 are used to 
output possible DNA sequence from Euler algorithm. All the 
outputs is 21 bits binary. Since some of possible DNA sequence 
from Euler algorithm might contain less than seven letter, this 
blank letter is replaced with ignore representation. 

TABLE IV.  BINARY REPRESENTATION OF DNA LETTER. 

DNA Letter 
Binary 

Representation 

A 0002 

C 0012 

G 0102 

T 0112 

Ignore 1112 

 

There are three major modules block in the system. The first 
module is Converter module. This module functions is to 
converts the input DNA strand into edges and vertices. The k is 
set to four. The edges will be four letter width and vertices will 
be three letter width. 12 bits and 9 bits are used for each edges 
and vertices respectively. The second module is Checker 
module. This module will check if there exist repetition or the 
edge path is used twice in the original sequence. If repetition 
exist in the sequence, this module will set the module output to 
1 and vice versa. Last but not least, the Assembly module will 
transform the edges and vertices into de Brujin graph and apply 
Euler path on the graph. The output of this module is the possible 
DNA sequence after applying Euler path. 

This system is clock driven. It has reset input for resetting 
purpose. The DNA sequence is first inserted into the system 
through the “DNAstrand” port. Vertices and edges are produced 
from the DNA sequence. The checker module will then check if 
there exist repetition in the DNA sequence. If repetition exist, 
the checker will disable the Euler block from further processing. 
If not, the vertices and edges will go through the Assembly 
module and the de Brujin is applied as well as the Euler path. If 
Euler path exist in the sequence, this module will sent the 
possible output data to the output port out2, out3 and / or out4. 
If there are no Euler path in the sequence, all the output port will 
produce ignore output. 

C. Project Work Flow 

This project design flow is separated into two, FPGA design 
flow and ASIC design flow. FPGA design flow will be 
conducted first before doing the ASIC design flow. The FPGA 
flow is designed using the Xilinx Vivado software. For the ASIC 
design flow, Synopsys tools are used. 

1) FPGA Design Flow:  

Figure 4 FPGA design flow 

Figure 4 shows the design flow of DNASGM in FPGA 
design flow. Firstly, the theoretical of DNA is studied. Different 
types of algorithm for DNA fragment assembly is reviewed. All 
the reviewed material of algorithms for DNA fragment assembly 
are compared to create the working DNA fragment assembly 
module. 

Once better understanding on the design is obtained, the 
module of the DNASGM module is modelled in Verilog 
language. This module is designed using Xilinx Vivado. Using 
this software, synthesis and test benching can be done to the 
design. If error occur during synthesis or test bench, the module 
is recheck for any syntax error.  

2) ASIC Design Flow:  

 
Once satisfied with the Verilog module, the coding is then 

simulated in Verilog Compiled Simulator (VCS). Figure 5 
shows the work flow in designing the DNASGM in ASIC design 
flow. This process is to check the functionality of the design. If 
there exist error, the module need to be check for any error. The 
VCS is repeated until the simulation is as expected.  

Then, the module is synthesized with constraints using 
Design Compiler (DC) of Synopsys. Various constraints are 
applied to the modules to check the modules timing and other 
parameters. If the result of compilation does not met the 
specification, the constraints are changed to other suitable value.  

Lastly, the PT is conducted to optimize the timing of design. 
The PT process is quite similar to DC process. The only 
difference is PT will perform more advance timing analysis. It 
gives better picture of the design static timing. 

 



 

Figure 5 ASIC design flow 

D. Construct Module Using Verilog 

The DNASGM is designed with Verilog language using the 
Xilinx Vivado tool. Compared to Xilinx ISE, Vivado has better 
synthesis engine. Before writing all the coding, all the internal 
modules need to be specified first. Each of modules is designed 
based on Figure 5. The DNASGM RTL schematic generated 
from Vivado tools can be referred to Figure 6 in Appendixes. 

During this process, few additional modules are added to the 
system to handle timing issues as well as short listing the Euler 
module from 19 outputs to only three outputs.  

Pipeline is added in the modules to synchronize the data 
arrival from the converter module to assembling module. The 
first pipeline is added at the same level of common edge module, 
while the second pipeline is placed between the common edge 
and assembly module.  

After the Sequence module, another module, Selector 
module, is placed before the output port. This module functions 
is to select only output pin with data to be connected to the 
output port. This is due to the Euler block inside the Sequence 
module have a total of 19 outputs. From all the 19 outputs, only 

three will have data in it. Before the output port, D flip-flop is 
added for each port. 

IV. RESULTS AND DISCUSSION 

A. Synthesize RTL 

Vivado software is used to synthesis the Verilog file at RTL 
stage. The RTL schematic can be referred to Figure 6. As stated 
before, pipeline is added in the system to synchronize the data 
transmission timing between the edge converter, vertice 
converter and common vertice checker. Figure 7 in Appendixes 
shows the synthesize schematic generated from Vivado 
software.  

B. RTL Simulations 

Waveform in Figure 8 is obtained using the Vivado 
simulator. The inputs are DNAstrand, clock and reset. The 
outputs are DNAout1, DNAout2, DNAout3 and DNAout4. 
DNAout1 will generate outputs the same as in input sequence. 
In this simulation, the reset is asserted to 1 after 130ns. After 
100ns, the reset is set to 0. It is noticed that after the reset change 
to 0, the output for Euler path has value in it. This is due to after 
reset, the common vertice module will produce output 0, which 
let the Euler module to apply the Eulerian path on the input 
sequence. After two clock cycles, the common vertice will sent 
signal 1 to Euler module to disable the module from applying 
the Euler path on the input sequence. For this simulation, the 
clock period is set to 10ns. The output will be produced after 2 
clock cycle. 

TABLE V.  SIMULATION RESULT FOR DNASGM USING VIVADO. 

DNA 

Sequence 

Euler Out 1 

(DNAout2) 

Euler Out 2 

(DNAout3) 

Euler Out 3 

(DNAout4) 

AAAAAAA - - - 

TAAAAAC - - - 

TAGATAC - - - 

TATATGC TATGC - - 

AATATAT - - - 

GGGGGGG - - - 

GATGATT GATT - - 

CTTGTAT - - - 

AATTTTT - - - 

TAGAGAC TAGAC - - 

TTTATTT - - - 

 

In Table II, the input sequence applied to the DNASGM is 
in the DNA Sequence column. The three Euler out is the output 
port of the DNASGM, which all possible Euler path result is  

 

 
Figure 8 Simulation waveform of DNASGM from Vivado. 

 



 

shown here. Whenever there is no Euler path on input sequence, 
the DNASGM will produce “Ignore” (refer Table I). This 
“Ignore” is represented with “-” in Table II. 

C. Re-verify Design Using Verilog Compiler Simulator (VCS) 

In ASIC design flow, the module need to be first re-verified 
using the VCS. This tool will simulate the Verilog module and 
produce waveform. Test benching is done during this process. 
The output waveform is observed to determine whether the 
module functions correctly or not.  

The waveform data obtained in Figure 9 is similar to the 
waveform generated from Vivado simulation. The output data is 
referred to Table II. 

D. Resynthesize Design Using Design Compiler (DS) 

This step involves synthesize, with additional constraints 
applied to the Verilog module. The schematic circuit before any 
process done is in Figure 10 in Appendix. The constraints 
applied to the design is mostly timing constraints. Once 
constraints are applied to the design, the module is compiled. 
Various type of compiling are used to observe the difference in 
speed processing of the DNASGM.  

Figure 11, 12 and 13 in Appendix show the schematic circuit 
of the DNASGM after normal compile, normal compile with 
high effort in area and map, and “compile ultra”. Five types 
reading are taken using DC. The readings varies in the time 
period. The periods use are 500ns, 600ns, 700ns, 800ns and 
900ns. QOR, power, timing for setup time and hold time reports 
are generated for each type of periods.  

Figure 14 shows the relationship between cell area and 
timing period (TP). The data in the graph is taken from Table III, 
IV and V. For normal compile, the design area is big for TP = 
500ns, but decrease when TP increase to 600ns. The area 
increase after 700ns. The graph then change to 350000um2 at 
800ns. For normal compile with high effort in area and map, the 
design area is big for TP = 500ns. When synthesize with TP = 
600ns, the area decrease. But, the area increases when TP = 
700ns. The area is then linearly decrease after TP = 800ns. For 
“compile ultra”, the area is saturated around 80000um2.  

  

 

Figure 14 Graph of design area versus timing period (TP). 

Figure 15 shows the relationship between dynamic power 
and timing period (TP). The data in the graph is taken from Table 
III, IV and V. For normal compile, the power is around 200uW 
at TP = 500ns. It decrease around 50uW at TP = 600ns. The graph 
increase to around 200uW at TP = 700ns. The graph is the 
saturated around 180uW. For normal compile with high effort, 
the power is around 200uW at TP = 500ns. It decrease to around 
50uW at TP = 600ns. The graph is then increased and saturated 
from TP = 700ns at around 180uW. For “compile ultra”, the 
graph is saturated at around 100uW. 

Figure 16 shows the relationship between leakage power and 
timing period (TP). The data in graph is referred to Table III, IV 
and V. For normal compile, the power is around 2.2mW at TP = 
500ns. At TP = 600ns, the power decrease at 1.2mW. The graph 
increase from TP 700ns to 800ns. The graph finally decrease to 
around 1.5mW at TP = 900ns. For normal compile with high 
effort, at TP = 500ns, the power is around 2.2mW. At TP = 600ns, 
the power decrease to around 1.2mW. The power increased to 
around 2.2mW at TP = 700ns. The graph is then linearly decrease 
after TP = 800ns. The power is saturated at 0.2mW for “compile 
ultra”. 
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Figure 9 Waveform generated using the VCS 

TP 

Total Area 
Dynamic Power Leakage Power T MAX (T SETUP) T MIN (T HOLD) 

Cell Area Design Area 

500ns 497910.5298 547561.5491 210.3703 uW 2.5161 mW -89.76 ns 3.21 ns 

600ns 341192.1564 398405.9106 62.3526 uW 1.2639 mW 0.00 ns 1.75 ns 

700ns 382728.3902 434138.4808 177.8454 uW 1.4191 mW 0.00 ns 3.94 ns 

800ns 492,859.0864 545,906.7130 180.7882 uW 2.5142 mW 0.00 ns 4.31 ns 

900ns 351855.2144 406360.9006 164.0872 uW 1.3094 mW 0.00 ns 4.67 ns 

 

TABLE III. DC REPORTS FOR NORMAL COMPILE. 



 

Figure 15 Graph of dynamic power versus timing period (TP) 

 

Figure 16 Graph of leakage power versus timing period (TP). 

E. Static Timing Analysis (STA) Using Prime Time (PT) 

This step is done after performing DC. In this step, more 
advance timing analysis is performed on the module. In this step, 
the result will determine whether the circuit can be proceed to 
ICC phase. If the STA fails in this step, the module need to re 
verify until the STA is succeed. It is noticed that the slack 
improves when doing STA. This due to STA process involves 
more advance timing compiling. This project stop at this 
process. This is due to lack of time and resource to continue the 
step to ICC and floor planning. 

 
Data in Table VI, VII and VIII consist of all result from 

performing STA on DNASGM. The setup time and hold time 
reports are generated from this process. The data from both of 
this report are recorded in Table IV. Since Tsetup calculation 
occurs between two flops, most of the readings has big value of 
slack. The data recorded shows that the DNASGM can be 
implement with period minimum of 600ns.  

TABLE VI.  STA RESULT OF DNASGM FROM DC NORMAL COMPILE. 

TP T MAX (T SETUP) T MIN (T HOLD) 

500ns 393.4361 ns 3.1769 ns 

600ns 493.1912 ns 3.5425 ns 

700ns 593.0621 ns 3.9078 ns 

800ns 692.8196 ns 4.2733 ns 

900ns 692.8772 ns 4.2733 ns 
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TABLE IV.  DC REPORTS FOR NORMAL COMPILE WITH HIGH EFFORT FOR AREA AND MAP. 

TP 

Total Area 
Dynamic Power Leakage Power T MAX (T SETUP) T MIN (T HOLD) 

Cell Area Design Area 

500ns 507198.3388 555567.9978 205.4998 uW 2.4109 mW -22.73 ns 3.21 ns 

600ns 337672.9053 394136.4007 62.3634 uW 1.2377 mW 0.04ns 1.75 ns 

700ns 491481.2238 543795.4263 186.8733 uW 2.3549 mW 0.01 ns 3.94 ns 

800ns 428325.2779 485582.4985 176.2419 uW 2.0748 mW 0.01 ns 4.31 ns 

900ns 349510.2654 403378.3786 163.4858 uW 1.2792 mW 0.03 ns 4.67 ns 

TABLE V.  DC REPORTS FOR “COMPILE ULTRA”. 

TP 

Total Area 
Dynamic Power Leakage Power T MAX (T SETUP) T MIN (T HOLD) 

Cell Area Design Area 

500ns 85204.4271 93918.6687 105.6925 uW 278.7065 uW 0.06 ns 3.38 ns 

600ns 82535.7720 90760.1180 97.8348 uW 256.0657 uW 0.01 ns 4.47 ns 

700ns 82803.2030 90888.0817 99.6926 uW 263.4631 uW 0.32 ns 4.11 ns 

800ns 82118.2870 90373.9433 97.8254 uW 257.4460 uW 0.01 ns 4.47 ns 

900ns 82818.6010 91020.4440 94.4256 uW 262.0069 uW 0.02 ns 4.84 ns 

 



TABLE VII.  STA RESULT OF DNASGM FROM DC NORMAL COMPILE 

WITH HIGH EFFORT IN AREA AND MAP. 

TP T MAX (T SETUP) T MIN (T HOLD) 

500ns 393.0659 ns 3.1769 ns 

600ns 493.0516 ns 3.5425 ns 

700ns 592.9235 ns 3.9078 ns 

800ns 692.7366 ns 4.2733 ns 

900ns 692.7369 ns 4.2733 ns 

TABLE VIII.  STA RESULT OF DNASGM FROM DC “COMPILE ULTRA”. 

TP T MAX (T SETUP) T MIN (T HOLD) 

500ns 13.2272 ns 3.3390 ns 

600ns 112.7365 ns 3.7045 ns 

700ns 211.2993 ns 4.0700 ns 

800ns 310.3354 ns 4.4355 ns 

900ns 231.6400 ns 4.4355 ns 

V. CONCLUSION 

In conclusion, this module is successfully designed using the 
Euler path Algorithm. This module can be applied to FPGA and 
ASIC design flow. The timing analysis from DC and STA show 
the module can be operated in 1.67MHz operation. All of the 
objectives of this project has successfully achieved. 

ACKNOWLEDGMENT 

The author would like to thank Mr. Karimi Abdul Halim for 
supervising this project. With his guidance, as well as technical 
feedback, this project managed to come to fruition. Author 
would also like to appreciate the Faculty of Electronic 
Engineering in Universiti Teknologi MARA Shah Alam for 
providing suitable workplace for the author to conduct the 
project and finish it successfully. 

REFERENCES 

[1]  “What Is DNA?”, (Genetics Home Reference), [Online] 2013, 
http://ghr.nlm.nih.gov/handbook/basic/dna/ (Accessed: 31 May 2013). 

[2] J. M. Claverie, “Bioinformatic For Dummies”, 2nd ed., Indiana: Wiley 
Publishing Inc, pp.17–21, 2007. 

[3] F. P. Preparata and E. Upfal, “Sequencing-By-Hybrization At The 
Information-Theory Bound: An Optimal Algorithm”, Journal 
Computational Biology 2000, New York, USA, pp. 245-253, 2000. 

[4] P. A. Pevzner, “Computational Molecular Biology: An Algorithm 
Approach”, London, The MIT Press, Cambridge, pp. 67-70, 2000. 

[5] S. Anderson, “Shotgun DNA Sequencing Using Cloned DNase I-
Generated Fragments”, In Nucleic Acid Research, pp. 3015-3027, July 
1981. 

[6] J. Commins, C. Toft and M. A. Fares, “Computational Biology Methods 
and Their Application to the Comparative Genomics of Endocellular 
Symbiotic Bacteria of Insects”, In Biological Procedures Online Vol. 11, 
Dublin, Ireland, pp. 52-78, Dec 2009. 

[7] D. MacLean, J. D. G. Jones and D. J. Studholme, “Application Of ‘Next-
Generation’ Sequencing Technologies To Microbial Genetics”, In Nature 
Review Microbial Vol.7, The Sainsbury Laboratory, UK, pp. 287-296, 
April 2009. 

[8] L. Li and S. Khuri, “A Comparison Of DNA Fragment Assembly 
Algorithm”, In Proceeding of 2004 International Conference on 
Mathematics and Engineering Techniques in Medicine and Biological 
Sciences, Las Vegas, pp. 329-335, 2004. 

[9] J. Kaptcianos, “A Graph Theoritical Approach to DNA Fragment 
Assembly”, In American Journal of Undergraduate Research Vol. 7 No 1, 
Vermont, USA, 2008. 

[10] P. E. C. Compeau, P. A. Pevzner and G. Tesler, “How To Apply de Brujin 
Graphs To Genome Assembly”, Online Publication on 8 November 2011, 
Nature Biotechnology 29, pp 987-991, 2011. 

[11] P. A. Pevzner, H. Tang and M. S. Waterman, “An Eulerian Path Approach 
To DNA Fragment Assembly”, Department of Computer Science and 
Engineering, University of California, CA, 2001. 

[12] P. A. Pevzner, H. Tang and M. S. Waterman, “A New Approach To 
Fragment Assembly In DNA Sequencing”, In Proceeding of 2001 Fifth 
Annual International Conference on Computational Biology, New York, 
pp 256-267, 2001. 

[13] S. A. M. Al Junid, Z. A. Majid and A. K. Halim, “High Speed DNA 
Sequencing Accelerator Using FPGA”, In Proceeding of 2008 
International Conference on Electronic Design, Penang, Malaysia, pp 1,4, 
Dec 2008. 

[14] H. Zhou, Z. Zhao and H. Wang, “A New Approach For Motif Discovery 
Based On The de Brujin Graph”, In Proceeding of 2009 Sixth 
International Conference on Fuzzy Systems and Knowledge Discovery, 
Tianjin, China, pp. 39-42, 2009. 

[15] Y. Zhang and M. S. Waterman, “An Eulerian Path Approach To Global 
Multiple Alignment For DNA Sequences”, Journal of Computational 
Biology, Vol. 10, Mary Ann Liebert, Inc, pp 803-819, 2003. 

[16] G. E. Alexanderson, “About The Cover: Euler and Konigsberg’s Bridges: 
A Historical View”, In Journal of The American Mathematical Society 
Vol. 43, pp. 567-673, July 2006. 

[17] L. B. H. Vector, “Eulerian Path and Circuit”, [Online] 2013, 
http://www.informatika.bg/resources/Eulerianpathandcircuit.pdf 
(Accessed: 1 June 2013). 

[18] J. L. Martin, “Euler Paths and Euler Circuits”, [Online] 2013, 
http://www.math.ku.edu/~jmartin/course/math105-
F11/Lectures/chapter5-part2.pdf (Accessed: 1 June 2013). 

 

 

 

 

 

 

 

 

 

 

 

 

 



APPENDIX 

 

 

Figure 6 RTL Schematic of DNASGM 
 

 

Figure 7 Synthesize schematic of DNASGM. 

 

 
Figure 10 Schematic Circuit of DNASGM before DC. 

 

 
 

Figure 11 Schematic Circuit of DNASGM for normal-

compile. 

Figure 12 Schematic Circuit of DNASGM for normal compile 

with high map effort and high area effort. 

 



 
Figure13 Schematic Cir  cuit of DNASGM for ultra-compile. 

 


