
Design And Analysis Of Sequence Generator Module

Using Eulerian Path Algorithm For DNA Fragment

Assembly

M. M. Subri and A. K. Halim

Centre for Electronic Studies, Faculty of Electrical Engineering

University Teknologi MARA, 40450

Shah Alam, Selangor, Malaysia

Email: mus8989@yahoo.com.my

Abstract—This project is to design and analyze of sequence

generator module using Eulerian Path Algorithm for DNA

fragment assembly. Mostly, “overlap – layout - consensus” method

is used to assemble DNA, but a new system need to be introduced

to overcome problems in assembling long DNA sequence in this

method. Euler Path Algorithm is used since it has better

assembling ability especially in assembling long sequence. The

objective of this project is to design the DNA sequence generator

modules using the Eulerian Path Algorithm. This project is

designed based on speed optimization. DNA fragment assembly is

a process reassembling fragment of DNA like a puzzle into several

other sequence. DNA fragment assembly consists of two process,

assembling and alignment. For FPGA design, synthesis and

simulation is done using the Xilinx Vivado software to obtain the

RTL schematic as well as the waveform of the module. In ASIC

design, Synopsys tools is used for analysis the project. Tools used

are VCS for re verifying the design for further process in ASIC

design, DC for resynthesize and remodeling the design with

constraints and lastly static timing analysis using PT for advanced

static timing analysis. The average area for normal-compile using

DC is 413,309.1um2 while for ultra-compile is 83,096.06um2. The

average dynamic power and leakage power for normal compile is

159.0887uW and 1.8045mW, while for “compile ultra” is 99.09uW

and 263.54uW. From comparison with timing analysis in DC and

STA in PT, this system can be run on minimum 600ns period.

Based on the result obtained, this project has been successfully

designed and simulated on FPGA and ASIC design flow.

Keywords-Sequence Generator Module; Eulerian Path

Algorithm; DNA Fragment Assembly; DNASGM

I. INTRODUCTION

DNA fragment assembly is a process to assemble the DNA
genome and reconstruct it. The demands on this process
nowadays not only focus on medical field, it also covers in
investigation, inheritance, food and many more fields. Few
system had already been designed for DNA fragment assembly.
Most of this systems take a lot times to process the DNA
sequence and some even take days. A good system need to be
cost effective, high reliability, high processing speed as well as
low power consumption. Hence, the DNA sequence generator
module (DNASGM) will be designed focusing on speed
optimization.

Every living beings has Deoxyribonucleic acid (DNA) inside
their body. This large macromolecule forms the genes. The
DNA form is long and double helix. The sequence in DNA
contains information of the DNA carrier, and throughout of the
carrier body nearly all the DNA sequence is same [1]. The
human DNA contains a nitrogenous organic bases, called
nucleotides. In DNA, there are four types of nucleotides, each
can be represented with a single letter. The nucleotides are
Adenine (A), Cytosine (C), Guanine (G) and Thymine (T) [2].
A single DNA strand will contain thousands of these
nucleotides. In the DNA, the helix is complimentary of each
other [1]. Each nucleotides has it owns pair, adenine (A) with
thymine (T) and cytosine (C) with guanine (G). By using this
four letter, fragment assembly can be conducted faster compared
by assembling using the 20 types of amino acid [2].

There are various techniques to be used for DNA
sequencing. The first one is sequencing by Hybridization.
Hybridization is a technique which the short sequences of
nucleotides DNA is contacted with target DNA sequence [3].
This method used synthetic fragment of DNA in probe which
contain 8 to 30 nucleotides. The target DNA sequence will
hybridize to the probe when it is complement to each other [4].
The second technique for sequencing DNA is shotgun
sequencing. Using this technique, sequence is produced from
composite of overlaps small fragment sequence [5]. For this
technique, two approach can be used. For the first approach, the
DNA sequence is break into segments with random length [9].
All this fragment is then assembled by overlapping [6]. The
fragments obtain from this approach can be assembled using
Euler Path Algorithm, de Brujin graph as well as overlap-layout-
consensus [6]. Another approach of Shotgun sequencing is by
breaking the DNA sequence into longer length fragment [6].
From this long fragment, it will be break into smaller length
fragment [6]. This smaller fragment is then assembled using
various technique. This approach has better speed processing
compared to previous approach [6]. Asides from Hybridization
and Shotgun sequencing technique, another method is presented
recently, which is High-throughput sequencing technologies [7].

There are many types of DNA fragment assembly algorithm.
A studies had already been conducted to compare between the
methods [8]. One of the DNA fragment assembly technique is
“overlap-layout-consensus” [8]. This technique consists of three

phase. The first phase is Overlap Phase [8]. This phase
objectives is to find the overlapping fragments. In this phase, the
best or longest path of the sequence will be determined. The
second phase is Layout Phase [8]. The order of fragment is
determined by overlapping the fragment. This is the phase which
combination of the alignment will be obtained. Lastly, the third
phase is Consensus Phase [8]. This phase will determine the
sequence from layout obtain in Layout Phase. Another method
for assembling is using de Brujin graph [9] [10]. This graph
consist of vertices and edges. It is dependent to l – 1. The l is the
length of the edges. Euler path algorithm is another method in
assembling the DNA fragment [11] [12] [13]. This algorithm is
a better approach compare to “overlap-layout-consensus”
approach [11] [12] [13]. This project module is design using
Verilog language based on Euler path algorithm. The design is
analyzed and simulated first before continuing into ASIC design
flow.

II. EULERIAN PATH ALGORITHM

The Euler path algorithm involves constructing the DNA
sequences into de Brujin graph [14] first before applying the
Euler path [15].

This algorithm originates from Leonard Euler, a Swiss
Mathematician, in 1736. This algorithm is related to the
problems of seven bridge of Konigsberg [16]. In this problem,
there are seven bridge connecting between islands at the City of
Konigsberg. A route need to be determine which the road only
pass through each bridge once. [17].

There are two types of Euler, Euler path and Euler circuit.
Both of this types uses the edges only once. The different is
Euler path starts and ends at different vertices. While for Euler
circuit, it starts and ends at the same vertices. Since the DNA
sequence starting and ending point is already determined, Euler
path is used for DNA sequencing [18].

Before constructing the de Brujin graph, the k value need to
first identified. For this paper, k = 4 is used in the module. Once
the k is identified, the DNA sequence is separated to k-1 sized
vertices. All the vertices is connected with k sized edges. All the
vertices will be aligned into a node graph with the edges
respectively. Eulerian cycle is then applied to the graph [18]. All
possible sequence is then generated.

Figure 1 DNA sequence divided to edges and vertices diagram.

In Figure 1, a DNA sequence of 7 letter width is used to
apply to de Brujin graph. First, k-mers is set to 4. Edges is 4 letter
width and the vertices is 3 letter width. In a single edge, it consist
of 2 vertices. 2 edges share one common vertice.

Figure 2 De Brujin graph with Euler path.

In Figure 2, the vertices obtain from Figure 1 is rearranged
to de Brujin graph. The common vertices is tied together, leaving
only 4 vertices in the graph. Two sequence can be obtained from
Figure 2, which is ACTCTCTA and ACTCTA.

III. METHODOLOGY

The DNASGM will be go through process of FPGA and

ASIC designing. Before designing, the specification of this

module need to be identify and illustrate into block diagram. By

using block diagram, all the important features of this modules

can be review effectively before continuing into the FPGA and

ASIC design flow.

A. Proposed Technique

To construct the DNASGM, the Assembly module will

implement the hybrid technique of de Brujin graph and Euler

Path Algorithm. The inputs need to be converted to edges and

vertices. To avoid producing repetition output, a module is

needed to check common between the edges. In this project, the

Assembly module does not implement the Euler algorithm

completely. Instead, all possible types of de Brujin graph with

Euler path applied to the graph is first identified. From the

identified graph, all possible output can be produced. This

produced output is placed inside the coding. By doing this

method, the outputs of the Assembly module will be many. A

selector module will be added to select only the possible outputs

for the input sequence to be outputted out of DNASGM.

B. DNASGM Block Diagram

Figure 3 Block diagram of DNASGM

Figure 3 shows the block diagram of DNASGM. This system
has three inputs and four outputs. The inputs consist of clock,

ACT CTC

TCT

TCA

reset and port for inputting DNA sequence. For this system, the
DNAstrand input can only take seven letters of DNA sequence.
For one letter, it is represented with three bits binary number,
which total up to 21 bits binary. Table I shows the representation
of bit for each letter. The outputs consist of out1, out2, out3 and
out4. The port out1 will output the original DNA sequence for
checking purpose. The ports out2, out3 and out4 are used to
output possible DNA sequence from Euler algorithm. All the
outputs is 21 bits binary. Since some of possible DNA sequence
from Euler algorithm might contain less than seven letter, this
blank letter is replaced with ignore representation.

TABLE IV. BINARY REPRESENTATION OF DNA LETTER.

DNA Letter
Binary

Representation

A 0002

C 0012

G 0102

T 0112

Ignore 1112

There are three major modules block in the system. The first
module is Converter module. This module functions is to
converts the input DNA strand into edges and vertices. The k is
set to four. The edges will be four letter width and vertices will
be three letter width. 12 bits and 9 bits are used for each edges
and vertices respectively. The second module is Checker
module. This module will check if there exist repetition or the
edge path is used twice in the original sequence. If repetition
exist in the sequence, this module will set the module output to
1 and vice versa. Last but not least, the Assembly module will
transform the edges and vertices into de Brujin graph and apply
Euler path on the graph. The output of this module is the possible
DNA sequence after applying Euler path.

This system is clock driven. It has reset input for resetting
purpose. The DNA sequence is first inserted into the system
through the “DNAstrand” port. Vertices and edges are produced
from the DNA sequence. The checker module will then check if
there exist repetition in the DNA sequence. If repetition exist,
the checker will disable the Euler block from further processing.
If not, the vertices and edges will go through the Assembly
module and the de Brujin is applied as well as the Euler path. If
Euler path exist in the sequence, this module will sent the
possible output data to the output port out2, out3 and / or out4.
If there are no Euler path in the sequence, all the output port will
produce ignore output.

C. Project Work Flow

This project design flow is separated into two, FPGA design
flow and ASIC design flow. FPGA design flow will be
conducted first before doing the ASIC design flow. The FPGA
flow is designed using the Xilinx Vivado software. For the ASIC
design flow, Synopsys tools are used.

1) FPGA Design Flow:

Figure 4 FPGA design flow

Figure 4 shows the design flow of DNASGM in FPGA
design flow. Firstly, the theoretical of DNA is studied. Different
types of algorithm for DNA fragment assembly is reviewed. All
the reviewed material of algorithms for DNA fragment assembly
are compared to create the working DNA fragment assembly
module.

Once better understanding on the design is obtained, the
module of the DNASGM module is modelled in Verilog
language. This module is designed using Xilinx Vivado. Using
this software, synthesis and test benching can be done to the
design. If error occur during synthesis or test bench, the module
is recheck for any syntax error.

2) ASIC Design Flow:

Once satisfied with the Verilog module, the coding is then

simulated in Verilog Compiled Simulator (VCS). Figure 5
shows the work flow in designing the DNASGM in ASIC design
flow. This process is to check the functionality of the design. If
there exist error, the module need to be check for any error. The
VCS is repeated until the simulation is as expected.

Then, the module is synthesized with constraints using
Design Compiler (DC) of Synopsys. Various constraints are
applied to the modules to check the modules timing and other
parameters. If the result of compilation does not met the
specification, the constraints are changed to other suitable value.

Lastly, the PT is conducted to optimize the timing of design.
The PT process is quite similar to DC process. The only
difference is PT will perform more advance timing analysis. It
gives better picture of the design static timing.

Figure 5 ASIC design flow

D. Construct Module Using Verilog

The DNASGM is designed with Verilog language using the
Xilinx Vivado tool. Compared to Xilinx ISE, Vivado has better
synthesis engine. Before writing all the coding, all the internal
modules need to be specified first. Each of modules is designed
based on Figure 5. The DNASGM RTL schematic generated
from Vivado tools can be referred to Figure 6 in Appendixes.

During this process, few additional modules are added to the
system to handle timing issues as well as short listing the Euler
module from 19 outputs to only three outputs.

Pipeline is added in the modules to synchronize the data
arrival from the converter module to assembling module. The
first pipeline is added at the same level of common edge module,
while the second pipeline is placed between the common edge
and assembly module.

After the Sequence module, another module, Selector
module, is placed before the output port. This module functions
is to select only output pin with data to be connected to the
output port. This is due to the Euler block inside the Sequence
module have a total of 19 outputs. From all the 19 outputs, only

three will have data in it. Before the output port, D flip-flop is
added for each port.

IV. RESULTS AND DISCUSSION

A. Synthesize RTL

Vivado software is used to synthesis the Verilog file at RTL
stage. The RTL schematic can be referred to Figure 6. As stated
before, pipeline is added in the system to synchronize the data
transmission timing between the edge converter, vertice
converter and common vertice checker. Figure 7 in Appendixes
shows the synthesize schematic generated from Vivado
software.

B. RTL Simulations

Waveform in Figure 8 is obtained using the Vivado
simulator. The inputs are DNAstrand, clock and reset. The
outputs are DNAout1, DNAout2, DNAout3 and DNAout4.
DNAout1 will generate outputs the same as in input sequence.
In this simulation, the reset is asserted to 1 after 130ns. After
100ns, the reset is set to 0. It is noticed that after the reset change
to 0, the output for Euler path has value in it. This is due to after
reset, the common vertice module will produce output 0, which
let the Euler module to apply the Eulerian path on the input
sequence. After two clock cycles, the common vertice will sent
signal 1 to Euler module to disable the module from applying
the Euler path on the input sequence. For this simulation, the
clock period is set to 10ns. The output will be produced after 2
clock cycle.

TABLE V. SIMULATION RESULT FOR DNASGM USING VIVADO.

DNA

Sequence

Euler Out 1

(DNAout2)

Euler Out 2

(DNAout3)

Euler Out 3

(DNAout4)

AAAAAAA - - -

TAAAAAC - - -

TAGATAC - - -

TATATGC TATGC - -

AATATAT - - -

GGGGGGG - - -

GATGATT GATT - -

CTTGTAT - - -

AATTTTT - - -

TAGAGAC TAGAC - -

TTTATTT - - -

In Table II, the input sequence applied to the DNASGM is
in the DNA Sequence column. The three Euler out is the output
port of the DNASGM, which all possible Euler path result is

Figure 8 Simulation waveform of DNASGM from Vivado.

shown here. Whenever there is no Euler path on input sequence,
the DNASGM will produce “Ignore” (refer Table I). This
“Ignore” is represented with “-” in Table II.

C. Re-verify Design Using Verilog Compiler Simulator (VCS)

In ASIC design flow, the module need to be first re-verified
using the VCS. This tool will simulate the Verilog module and
produce waveform. Test benching is done during this process.
The output waveform is observed to determine whether the
module functions correctly or not.

The waveform data obtained in Figure 9 is similar to the
waveform generated from Vivado simulation. The output data is
referred to Table II.

D. Resynthesize Design Using Design Compiler (DS)

This step involves synthesize, with additional constraints
applied to the Verilog module. The schematic circuit before any
process done is in Figure 10 in Appendix. The constraints
applied to the design is mostly timing constraints. Once
constraints are applied to the design, the module is compiled.
Various type of compiling are used to observe the difference in
speed processing of the DNASGM.

Figure 11, 12 and 13 in Appendix show the schematic circuit
of the DNASGM after normal compile, normal compile with
high effort in area and map, and “compile ultra”. Five types
reading are taken using DC. The readings varies in the time
period. The periods use are 500ns, 600ns, 700ns, 800ns and
900ns. QOR, power, timing for setup time and hold time reports
are generated for each type of periods.

Figure 14 shows the relationship between cell area and
timing period (TP). The data in the graph is taken from Table III,
IV and V. For normal compile, the design area is big for TP =
500ns, but decrease when TP increase to 600ns. The area
increase after 700ns. The graph then change to 350000um2 at
800ns. For normal compile with high effort in area and map, the
design area is big for TP = 500ns. When synthesize with TP =
600ns, the area decrease. But, the area increases when TP =
700ns. The area is then linearly decrease after TP = 800ns. For
“compile ultra”, the area is saturated around 80000um2.

Figure 14 Graph of design area versus timing period (TP).

Figure 15 shows the relationship between dynamic power
and timing period (TP). The data in the graph is taken from Table
III, IV and V. For normal compile, the power is around 200uW
at TP = 500ns. It decrease around 50uW at TP = 600ns. The graph
increase to around 200uW at TP = 700ns. The graph is the
saturated around 180uW. For normal compile with high effort,
the power is around 200uW at TP = 500ns. It decrease to around
50uW at TP = 600ns. The graph is then increased and saturated
from TP = 700ns at around 180uW. For “compile ultra”, the
graph is saturated at around 100uW.

Figure 16 shows the relationship between leakage power and
timing period (TP). The data in graph is referred to Table III, IV
and V. For normal compile, the power is around 2.2mW at TP =
500ns. At TP = 600ns, the power decrease at 1.2mW. The graph
increase from TP 700ns to 800ns. The graph finally decrease to
around 1.5mW at TP = 900ns. For normal compile with high
effort, at TP = 500ns, the power is around 2.2mW. At TP = 600ns,
the power decrease to around 1.2mW. The power increased to
around 2.2mW at TP = 700ns. The graph is then linearly decrease
after TP = 800ns. The power is saturated at 0.2mW for “compile
ultra”.

0

200000

400000

600000

500ns 600ns 700ns 800ns 900ns

C
el

l A
re

a

Period, Tp

Normal Compile

Normal Compile with High Effort

Compile Ultra

Figure 9 Waveform generated using the VCS

TP

Total Area
Dynamic Power Leakage Power T MAX (T SETUP) T MIN (T HOLD)

Cell Area Design Area

500ns 497910.5298 547561.5491 210.3703 uW 2.5161 mW -89.76 ns 3.21 ns

600ns 341192.1564 398405.9106 62.3526 uW 1.2639 mW 0.00 ns 1.75 ns

700ns 382728.3902 434138.4808 177.8454 uW 1.4191 mW 0.00 ns 3.94 ns

800ns 492,859.0864 545,906.7130 180.7882 uW 2.5142 mW 0.00 ns 4.31 ns

900ns 351855.2144 406360.9006 164.0872 uW 1.3094 mW 0.00 ns 4.67 ns

TABLE III. DC REPORTS FOR NORMAL COMPILE.

Figure 15 Graph of dynamic power versus timing period (TP)

Figure 16 Graph of leakage power versus timing period (TP).

E. Static Timing Analysis (STA) Using Prime Time (PT)

This step is done after performing DC. In this step, more
advance timing analysis is performed on the module. In this step,
the result will determine whether the circuit can be proceed to
ICC phase. If the STA fails in this step, the module need to re
verify until the STA is succeed. It is noticed that the slack
improves when doing STA. This due to STA process involves
more advance timing compiling. This project stop at this
process. This is due to lack of time and resource to continue the
step to ICC and floor planning.

Data in Table VI, VII and VIII consist of all result from

performing STA on DNASGM. The setup time and hold time
reports are generated from this process. The data from both of
this report are recorded in Table IV. Since Tsetup calculation
occurs between two flops, most of the readings has big value of
slack. The data recorded shows that the DNASGM can be
implement with period minimum of 600ns.

TABLE VI. STA RESULT OF DNASGM FROM DC NORMAL COMPILE.

TP T MAX (T SETUP) T MIN (T HOLD)

500ns 393.4361 ns 3.1769 ns

600ns 493.1912 ns 3.5425 ns

700ns 593.0621 ns 3.9078 ns

800ns 692.8196 ns 4.2733 ns

900ns 692.8772 ns 4.2733 ns

0

50

100

150

200

250

500ns 600ns 700ns 800ns 900ns

D
yn

am
ic

 P
o

w
er

, P
d

Period, Tp

Normal Compile

Normal Compile with High Effort

Compile Ultra

0

1

2

3

500ns 600ns 700ns 800ns 900ns

Le
ak

ag
e

P
o

w
er

, P
l

Period, Tp
Normal Compile

Normal Compile with High
Effort
Compile Ultra

TABLE IV. DC REPORTS FOR NORMAL COMPILE WITH HIGH EFFORT FOR AREA AND MAP.

TP

Total Area
Dynamic Power Leakage Power T MAX (T SETUP) T MIN (T HOLD)

Cell Area Design Area

500ns 507198.3388 555567.9978 205.4998 uW 2.4109 mW -22.73 ns 3.21 ns

600ns 337672.9053 394136.4007 62.3634 uW 1.2377 mW 0.04ns 1.75 ns

700ns 491481.2238 543795.4263 186.8733 uW 2.3549 mW 0.01 ns 3.94 ns

800ns 428325.2779 485582.4985 176.2419 uW 2.0748 mW 0.01 ns 4.31 ns

900ns 349510.2654 403378.3786 163.4858 uW 1.2792 mW 0.03 ns 4.67 ns

TABLE V. DC REPORTS FOR “COMPILE ULTRA”.

TP

Total Area
Dynamic Power Leakage Power T MAX (T SETUP) T MIN (T HOLD)

Cell Area Design Area

500ns 85204.4271 93918.6687 105.6925 uW 278.7065 uW 0.06 ns 3.38 ns

600ns 82535.7720 90760.1180 97.8348 uW 256.0657 uW 0.01 ns 4.47 ns

700ns 82803.2030 90888.0817 99.6926 uW 263.4631 uW 0.32 ns 4.11 ns

800ns 82118.2870 90373.9433 97.8254 uW 257.4460 uW 0.01 ns 4.47 ns

900ns 82818.6010 91020.4440 94.4256 uW 262.0069 uW 0.02 ns 4.84 ns

TABLE VII. STA RESULT OF DNASGM FROM DC NORMAL COMPILE

WITH HIGH EFFORT IN AREA AND MAP.

TP T MAX (T SETUP) T MIN (T HOLD)

500ns 393.0659 ns 3.1769 ns

600ns 493.0516 ns 3.5425 ns

700ns 592.9235 ns 3.9078 ns

800ns 692.7366 ns 4.2733 ns

900ns 692.7369 ns 4.2733 ns

TABLE VIII. STA RESULT OF DNASGM FROM DC “COMPILE ULTRA”.

TP T MAX (T SETUP) T MIN (T HOLD)

500ns 13.2272 ns 3.3390 ns

600ns 112.7365 ns 3.7045 ns

700ns 211.2993 ns 4.0700 ns

800ns 310.3354 ns 4.4355 ns

900ns 231.6400 ns 4.4355 ns

V. CONCLUSION

In conclusion, this module is successfully designed using the
Euler path Algorithm. This module can be applied to FPGA and
ASIC design flow. The timing analysis from DC and STA show
the module can be operated in 1.67MHz operation. All of the
objectives of this project has successfully achieved.

ACKNOWLEDGMENT

The author would like to thank Mr. Karimi Abdul Halim for
supervising this project. With his guidance, as well as technical
feedback, this project managed to come to fruition. Author
would also like to appreciate the Faculty of Electronic
Engineering in Universiti Teknologi MARA Shah Alam for
providing suitable workplace for the author to conduct the
project and finish it successfully.

REFERENCES

[1] “What Is DNA?”, (Genetics Home Reference), [Online] 2013,
http://ghr.nlm.nih.gov/handbook/basic/dna/ (Accessed: 31 May 2013).

[2] J. M. Claverie, “Bioinformatic For Dummies”, 2nd ed., Indiana: Wiley
Publishing Inc, pp.17–21, 2007.

[3] F. P. Preparata and E. Upfal, “Sequencing-By-Hybrization At The
Information-Theory Bound: An Optimal Algorithm”, Journal
Computational Biology 2000, New York, USA, pp. 245-253, 2000.

[4] P. A. Pevzner, “Computational Molecular Biology: An Algorithm
Approach”, London, The MIT Press, Cambridge, pp. 67-70, 2000.

[5] S. Anderson, “Shotgun DNA Sequencing Using Cloned DNase I-
Generated Fragments”, In Nucleic Acid Research, pp. 3015-3027, July
1981.

[6] J. Commins, C. Toft and M. A. Fares, “Computational Biology Methods
and Their Application to the Comparative Genomics of Endocellular
Symbiotic Bacteria of Insects”, In Biological Procedures Online Vol. 11,
Dublin, Ireland, pp. 52-78, Dec 2009.

[7] D. MacLean, J. D. G. Jones and D. J. Studholme, “Application Of ‘Next-
Generation’ Sequencing Technologies To Microbial Genetics”, In Nature
Review Microbial Vol.7, The Sainsbury Laboratory, UK, pp. 287-296,
April 2009.

[8] L. Li and S. Khuri, “A Comparison Of DNA Fragment Assembly
Algorithm”, In Proceeding of 2004 International Conference on
Mathematics and Engineering Techniques in Medicine and Biological
Sciences, Las Vegas, pp. 329-335, 2004.

[9] J. Kaptcianos, “A Graph Theoritical Approach to DNA Fragment
Assembly”, In American Journal of Undergraduate Research Vol. 7 No 1,
Vermont, USA, 2008.

[10] P. E. C. Compeau, P. A. Pevzner and G. Tesler, “How To Apply de Brujin
Graphs To Genome Assembly”, Online Publication on 8 November 2011,
Nature Biotechnology 29, pp 987-991, 2011.

[11] P. A. Pevzner, H. Tang and M. S. Waterman, “An Eulerian Path Approach
To DNA Fragment Assembly”, Department of Computer Science and
Engineering, University of California, CA, 2001.

[12] P. A. Pevzner, H. Tang and M. S. Waterman, “A New Approach To
Fragment Assembly In DNA Sequencing”, In Proceeding of 2001 Fifth
Annual International Conference on Computational Biology, New York,
pp 256-267, 2001.

[13] S. A. M. Al Junid, Z. A. Majid and A. K. Halim, “High Speed DNA
Sequencing Accelerator Using FPGA”, In Proceeding of 2008
International Conference on Electronic Design, Penang, Malaysia, pp 1,4,
Dec 2008.

[14] H. Zhou, Z. Zhao and H. Wang, “A New Approach For Motif Discovery
Based On The de Brujin Graph”, In Proceeding of 2009 Sixth
International Conference on Fuzzy Systems and Knowledge Discovery,
Tianjin, China, pp. 39-42, 2009.

[15] Y. Zhang and M. S. Waterman, “An Eulerian Path Approach To Global
Multiple Alignment For DNA Sequences”, Journal of Computational
Biology, Vol. 10, Mary Ann Liebert, Inc, pp 803-819, 2003.

[16] G. E. Alexanderson, “About The Cover: Euler and Konigsberg’s Bridges:
A Historical View”, In Journal of The American Mathematical Society
Vol. 43, pp. 567-673, July 2006.

[17] L. B. H. Vector, “Eulerian Path and Circuit”, [Online] 2013,
http://www.informatika.bg/resources/Eulerianpathandcircuit.pdf
(Accessed: 1 June 2013).

[18] J. L. Martin, “Euler Paths and Euler Circuits”, [Online] 2013,
http://www.math.ku.edu/~jmartin/course/math105-
F11/Lectures/chapter5-part2.pdf (Accessed: 1 June 2013).

APPENDIX

Figure 6 RTL Schematic of DNASGM

Figure 7 Synthesize schematic of DNASGM.

Figure 10 Schematic Circuit of DNASGM before DC.

Figure 11 Schematic Circuit of DNASGM for normal-

compile.

Figure 12 Schematic Circuit of DNASGM for normal compile

with high map effort and high area effort.

Figure13 Schematic Cir cuit of DNASGM for ultra-compile.

