
Malaysian Journal of Computing, 10 (1): 2084-2098, 2025
Copyright © UiTM Press
eISSN: 2600-8238

This is an open access article under the CC BY-SA license
(https://creativecommons.org/licenses/by-sa/3.0/).

2084

APPLYING FUNCTION POINT METHOD TO MEASURE

ENTREPRENEURSHIP SYSTEM SIZE AT UiTM

Gazairi Ghazali1*, Mohd Hairy Mohamaddiah2, Ahmad Sobri Abdul Haris3, and

Syarifah Nurul Afzan Syed Mohammed4
1*, 2,3,4Infostructure Department, Office of Infrastructure

& Infostructure, Universiti Teknologi MARA, 40450
Shah Alam, Selangor, Malaysia

 1*gazairi@uitm.edu.my, 2hairy@uitm.edu.my,
3ahmadsobri@uitm.edu.my, 4sy.nurul.afzan@uitm.edu.my

ABSTRACT

Traditional estimation methods for assessing the size and scope of software systems often result
in inaccuracies, leading to budget overruns and timeline delays. This is particularly
problematic in the development of complex systems like the Entrepreneurship Information
Management System (MASMED2U) at UiTM. There is a need for a more precise and user-
centric approach to measure system size, costs, and development timelines effectively. This
paper investigates the use of Function Point Analysis (FPA) to assess the size of the
Entrepreneurship Information Management System (MASMED2U) at UiTM. Adhering to the
IFPUG standard ISO/IEC 20926:2009, FPA measures system size using function points,
effectively addressing the inaccuracies of traditional estimation methods. By focusing on user-
centric functional features, including data and transactions, FPA offers a more precise solution
for estimating costs and timelines. FPA also enables system size measurement throughout the
development lifecycle, with Early and Quick FPA facilitating initial phase measurements for
budget proposals.

Keywords: Costing, Software Development, Software Engineering, Software Estimation, User
Requirement.

Received for review: 03-01-2025; Accepted: 20-03-2025; Published: 01-04-2025

DOI: 10.24191/mjoc.v10i1.4535

1. Introduction

Accurate estimation of software size and scope is crucial for effective project management,
budgeting, and scheduling. Traditional estimation methods often fall short in providing the
necessary precision, leading to common issues such as budget overruns and timeline delays.
These issues are especially critical in the development of complex information systems like the
Entrepreneurship Information Management System (MASMED2U) at Universiti Teknologi
MARA (UiTM). To address these challenges, this paper explores the application of Function
Point Analysis (FPA) as a more precise, user-centric approach for estimating system size, costs,
and development timelines. Traditional estimation methods have the limitations which can lead
to underestimation of effort and missed deadlines.

FPA, standardized by the International Function Point Users Group (IFPUG) under
ISO/IEC 20926:2009, offers a structured methodology to measure system size in terms of

Ghazali et al., Malaysian Journal of Computing, 10 (1): 2084-2098, 2025

2085

function points. This approach focuses on user-centric functional features, including data and
transactions, providing a more accurate estimation framework compared to traditional methods.
Additionally, FPA considers non-functional requirements and enables system size
measurement throughout the development lifecycle. This study evaluates the implementation
of FPA in the development of MASMED2U, aiming to demonstrate its effectiveness in
improving estimation accuracy and achieving cost savings since the development is executed
in house.

This system consists of three main modules. The MyENT module manages the
registration of entrepreneurial students, while the Tabung Keusahawanan Siswa (TKS) module
handles student loan applications, including interviews, loan disbursements, and repayment
management. The Program module oversees various entrepreneurial initiatives, such as the
Teaching Innovation Exploration (TIE), which manages entrepreneurship courses for
postgraduate students, and the Unicorn Scholar Program (USP), which facilitates
entrepreneurial apprenticeship programs. This system plays a crucial role in supporting student
entrepreneurship programs, aligning with the Ministry of Higher Education's vision of
equipping students with entrepreneurial skills and knowledge. In the rapidly evolving digital
ecosystem, understanding and anticipating customer demands, preferences, and buying habits
can be effectively achieved through data analytics.

The rest of the paper is structured as follows: Section 2 (Related Work) presents a
review of several studies on estimation methods and a comparison between Function Point
Analysis and other traditional methods. This section also provides a brief overview of the
methodological techniques used in the study. Section 4 and (Results and Discussion) presents
the experimental findings, followed by Section 6 (Conclusion), which summarizes the research
results.

2. Related Work

Software development projects rely heavily on accurate estimation to ensure successful delivery
within budget and timeframe. Traditional estimation methods, while facing challenges, remain
prevalent and offer valuable tools for project planning.

2.1 Traditional Estimation Methods

Traditional software estimation methods, such as expert judgment, analogy-based estimation,
and parametric models, often lack the precision required for complex systems (Bohem, 1981,
Wideman, 2002, Alshammari et. al, 2022). These methods rely heavily on historical data and
subjective assessments, which can lead to significant variances in estimates (Jørgensen, 2004).
For instance, COCOMO (Constructive Cost Model) and SLIM (Software Life Cycle
Management) are widely used parametric models that, while useful, may not adequately capture
the intricacies of user requirements and functional complexities (Boehm, 1981; Putnam &
Myers, 1997). COCOMO (Constructive Cost Model) is a parametric model that estimates
software development effort based on the size of the project (measured in LOC) and other cost
drivers, such as complexity, reliability, and experience of the development team (Boehm,
1981). Lines of Code (LOC) is one of the oldest and most straightforward methods for
measuring software size (McConnell, 1993). This metric counts the number of lines in a
program's source code, including both executable statements and comments (Bohem, 1981).

SLIM (Software Life Cycle Management) is another parametric model that estimates
software size, effort, and duration based on historical project data and the Rayleigh curve
(Putnam, 1978, Sharma et. al, 2021). Man-days estimation approach estimates the total effort
required to complete a software project by calculating the number of days a person (or a team)
would need to deliver the project (Jørgensen & Sjøberg, 2004). Expert judgment is one of the
most used traditional estimation methods, relying on the experience and intuition of seasoned
developers and project managers to estimate software size and effort (Jørgensen, 2004).
Analogy-based estimation involves comparing a new software project with similar past projects
to estimate size, effort, and cost (Shepperd et. al, 1997, Kumar, et. al, 2023). Both methods
heavily rely on the experience and knowledge of individuals, typically seasoned developers,

Ghazali et al., Malaysian Journal of Computing, 10 (1): 2084-2098, 2025

2086

project managers, or subject matter experts, to make accurate estimations. However, both
methods may struggle to scale effectively for large or highly complex projects, where more
systematic and data-driven approaches might be necessary for accurate estimation.

Function Point Analysis (FPA) is a structured technique used to measure the functional
size of a software system based on the functions it provides to the user. Unlike traditional
methods like Lines of Code (LOC) or man-days estimation, which focus on the volume of code,
or the time required to complete a project, FPA assesses the software's functionality from the
user's perspective, offering a more objective and consistent measure of software size (Albrecht,
1979, Van Hai et. al, 2022). Function Point Analysis (FPA) was developed by Allan Albrecht
at IBM in the late 1970s to measure the functionality delivered by software. Unlike traditional
methods that focus on the volume of code or effort required, FPA quantifies software based on
its functional requirements from the user's perspective. This approach considers various
elements, including inputs, outputs, user interactions, internal files, and external interfaces. The
International Function Point Users Group (IFPUG) standard, ISO/IEC 20926:2009, provides a
comprehensive framework for applying FPA, ensuring consistency and reliability in
measurements (IFPUG, 2009). Numerous studies have shown that FPA can enhance estimation
accuracy and provide a more reliable basis for project planning and resource allocation. For
instance, Albrecht's foundational work demonstrated that FPA could effectively measure
software size across various types of projects, making it a versatile tool for software estimation
(Albrecht, 1979). Additionally, FPA’s focus on user requirements allows for a better alignment
between software functionality and project goals, reducing the risk of scope creep and ensuring
that development efforts are directed towards meeting user needs (Jørgensen, 2004).

2.2 Comparison Between Function Point Analysis and Other Traditional Methods

Table 1 below derives the comparison between Function Point Analysis method and other
Traditional Methods in Software Estimation:

Table 1(a). Comparison Matrix between Function Point Analysis and Other Traditional Methods in

Software Estimation

Method Strength Weakness
FPA  Independent of

programming languages,
development
methodologies, or
technologies. This makes it a
versatile tool for various
projects (Abran &
Nguyenkim, 1991).

Standardized by the International
Function Point Users Group
(IFPUG), ensuring consistency
and reliability in measurement
across different projects and
organizations (IFPUG, 2010).

 Can be complex to learn and
apply, requiring specialized
training and expertise.
(Gencel & Demirörs, 2008).

The process of counting function
points can be time-consuming,
especially for large or complex
systems. (Abran & Nguyenkim,
1991).

LOC LOC has been widely used
because it is simple to understand
and apply across various
programming languages
(McConnell, 1993).

LOC does not consider non-
coding tasks, such as design and
testing, which are crucial in
modern software development
(Fenton & Pfleeger, 2014).

Man-days Commonly used in project
management to allocate
resources, schedule timelines, and
estimate costs (Boehm, 1981).

Highly dependent on the accuracy
of the initial assumptions
regarding team productivity,
project complexity, and
unforeseen challenges.
(Jørgensen, 2004).

COCOMO
(Boehm, 1981).

Effective for high-level cost
estimation

Reliance on LOC as a primary
input can be a limitation

Ghazali et al., Malaysian Journal of Computing, 10 (1): 2084-2098, 2025

2087

Table 1(b). Comparison Matrix between Function Point Analysis and Other Traditional Methods in
Software Estimation

Method Strength Weakness
SLIM
(Putnam, 1978).

Ability to model the entire
software development lifecycle,
from initial design to maintenance

Relies heavily on historical data
and statistical models, which may
not always capture the specific
functional requirements of a new
project

Expert judgement
(Jørgensen, 2004).

Can be quick and cost-effective Inherently subjective and prone to
biases, such as overconfidence or
reliance on recent experiences.

Analogy-based estimation
(Shepperd & Schofield, 1997).

Can be effective when there is a
strong similarity between projects

Can also lead to inaccurate
estimates if the differences
between projects are not
adequately accounted for

Based on the above comparison, FPA able to address and complement other traditional
methods in software estimation. For COCOMO, FPA, in contrast, focuses on the functionality
delivered to the user rather than the amount of code written (Albrecht, 1979). For SLIM, FPA
complements SLIM by providing a functional perspective on software size (Putnam, 1978;
Symons, 1991). For expert judgment, FPA offers a more objective alternative to expert
judgment by providing a structured and standardized approach to software estimation
(Albrecht, 1979; Gencel & Demirörs, 2008). For analogy-based estimation, FPA improves
upon analogy-based estimation by providing a detailed breakdown of the software's functional
components, making it easier to identify and adjust for differences between projects (Albrecht,
1979; Shepperd & Schofield, 1997). As a result, these traditional methods are often
supplemented or replaced by more sophisticated approaches, such as Function Point Analysis
(FPA), which aim to provide a more comprehensive and accurate measure of software size
(Albrecht, 1979; Symons, 1991). The error associated with function point measurement by
analysts with varying levels of experience was found to be relatively low, with a mean
difference of approximately 10%, as reported in a case study by Kemerer (1990).

3. Methods

We used Function Point Analysis to assess the size of the Entrepreneurship Information
Management System (MASMED2U) at UiTM. FPA calculation breaks down the software into
five main components: External Inputs (EI), External Outputs (EO), External Inquiries (EQ),
Internal Logical Files (ILF), and External Interface Files (EIF). Each component is assigned a
weight based on its complexity, and the total function points are calculated by summing the
weighted components. This method allows for a more detailed understanding of the software's
scope and provides a common metric that can be used across different projects and technologies
(Symons, 1991).

Early and Quick FPA methods aim to deliver timely and reasonably accurate estimates,
aiding in budget proposals and project planning during the project's inception phase. These
variants are valuable tools for project managers seeking to make informed decisions with
limited information (Jørgensen, 2004; Symons, 1991). The calculation of Function Points for
the MASMED2U system follows a systematic approach to quantify the system’s functionality.
We follow the standards or guidelines published by International Function Point Users Group
(IFPUG) in 2009. It will involve several steps.

The first step is the Functional Components Calculation. The calculation begins with
identifying and quantifying the system's functional components, which are categorized into two
main groups: transaction functions and data functions. Transaction functions include inputs
such as user input and data submissions while outputs include reports or data retrievals. Data
functions encompass internal files such as databases or data stores while external interfaces

Ghazali et al., Malaysian Journal of Computing, 10 (1): 2084-2098, 2025

2088

cover interactions with other systems.

Figure 1. Functional Components in FPA.

Referring to Figure 1, We define data function complexity in table 2 below:

Table 2. Data Function Complexity.

Entity Name Attribute Component
Type

Ret Det Complexity

Student atrribute 1
attribute n +1

ILF 3 21 S

Course atrribute 1
attribute n +1

ILF 1 14 R

Scholarship attribute n
attribute n +1

EIF 1 10 L

Next, we calculate the transaction function complexity. The complexity is defined
based on table 3 below:

Table 3. Transaction Function Complexity.

Function Component Type Ftr Det Complexity
View list EQ 1 1 L
View report summary EO 2 5 L
Add student EI 3 21 H
Edit student EQ 3 29 H

EI 3 29 H
Delete Student EI 1 3 H

Each complexity is defined based on Complexity Metric referring to the guide

in IFPUG. The second step is to calculate Unadjusted Function Points (uFP). The total
function points are derived by summing up the values assigned to the transactions and
data functions. Each function is assigned a specific weight based on its complexity and
contribution to the system’s functionality. Table 4 below defines the uFP. The value in
the table is as an example, to derive the uFP. The size of FP in table 4, is defined based
on Complexity Metric referring to the guide by IFPUG.

Table 4. Unadjusted Function Point.

Component Type Complexity Level
 Low (L) Medium (M) High (H) Total

ILF 1 X 7 1 X 10 0 X 15 17
EIF 1 X 5 0 X 7 0 X 10 5
EI 1 X 3 0 X 4 2 X 6 15
EO 1 X 4 0 X 5 0 X 7 4
EQ 1 X 3 0 X 4 1 X 6 9
Total Unadjusted FP 50

The third step is calculating Value Adjustment Factor (VAF). This factor accounts for

Ghazali et al., Malaysian Journal of Computing, 10 (1): 2084-2098, 2025

2089

non-functional requirements such as performance, security, and user experience. The VAF
adjusts the uFP to reflect the impact of these non-functional aspects on the system. Table 5
below define the VAF, with a value as an example to derive the VAF value.

Table 5. Value Adjustment Factor (VAF).

General System Characteristic (GSC) (0-5) General System Characteristic (GSC) (0-5)

1. Data Communications 5 8. On-Line Update 5

2. Distributed Data Processing 3 9. Complex Processing 2

3. Performance 5 10. Reusability 0

4. Heavily Used Configuration 0 11. Installation Ease 0

5. Transaction Rate 5 12. Operational Ease 0

6. On-Line Data Entry 5 13. Multiple Sites 0

7. End-User Efficiency 5 14. Facilitate Change 0

Total Degree of Influence (TDI) Sum (1-14) 35

Value Adjustment Factor (VAF) (TDI * 0.01)+0.65 1.00

The fourth step is calculating Adjusted Function Points (AFP). The final measurement
of software size is calculated by multiplying the Unadjusted Function Points (uFP) by the Value
Adjustment Factor (VAF). The formula is based on equation 1 below:

 𝐴𝐹𝑃 = 𝑈𝐹𝑃 𝑥 𝑉𝐴𝐹 (1)

This adjusted measure provides a comprehensive estimate of the software's

functionality, considering both its functional and non-functional aspects.

The fifth step is calculating effort of system development in man-days. The formula is

based on equation 2 below:

 𝐸𝑓𝑓𝑜𝑟𝑡(𝑚𝑎𝑛𝑑𝑎𝑦𝑠) = 𝐴𝐹𝑃𝑥10/8 ℎ𝑜𝑢𝑟 (2)

For equation 2, AFP value is derived from the FPA calculation while the effort
conversion factor is based on the average development effort in Malaysia, which is 10 man-
hours per 8-hour workday (Czarnacka-Chrobot, B., 2012).

The sixth step is calculating system development cost. The formula is as follows:

 𝐷𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡 𝐶𝑜𝑠𝑡 = 𝐴𝐹𝑃 𝑥 𝐷𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡 𝐶𝑜𝑠𝑡 𝑝𝑒𝑟 𝐹𝑃 (1200) (3)

Based on above formula, AFP is derived from the FPA calculation while RM1,200.00

is the cost per Function Point, reflecting the average development cost in Malaysia (Czarnacka-
Chrobot, B., 2012). All of the steps above will be applied to estimate the effort and cost
associated with MASMED2U system at the following section. We will also compare the
software costing from FPA calculation with analogy-based estimation to show the different.

4. Results

4.1.1 FPA Calculations

The calculation of Function Points for the MASMED2U system follows a systematic approach
as defined in Method topic as above involves following steps. For the first step, we performed
Functional Components Calculation, Data Function Complexity for MASMED2U. The result
is defined in table 6:

Ghazali et al., Malaysian Journal of Computing, 10 (1): 2084-2098, 2025

2090

Table 6: Complexity Defined for Data Function in MASMED2U.

ENTITY NAME COMPONENT
TYPE

RET DET COMPLEXITY

tbl_bil_create_fais EIF 1 10 L
tbl_bil_request_fais EIF 1 3 L

tbl_bill ILF 1 10 M
tbl_category_parameter ILF 1 3 L

tbl_disbursement ILF 1 6 L
tbl_disbursement_loan EIF 1 2 L

tbl_didbursement_loan_details EIF 1 4 L
tbl_events ILF 1 3 L

tbl_menu_item ILF 1 5 L
tbl_parameter ILF 1 4 L

tbl_permissions ILF 1 2 L
tbl_perniagaan ILF 2 17 L

tbl_perniagaan_pinjaman ILF 3 24 M
tbl_program ILF 7 26 H

tbl_program_category ILF 2 11 L
tbl_receipt_payment ILF 2 26 M

tbl_request_payment_fais EIF 1 15 L
tbl_roles ILF 1 2 L
tbl_users ILF 1 9 L
tbl_users EIF 1 9 L

tbl_user_information ILF 1 2 L

Transaction Function Complexity for MASMED2U is defined based on following table 7:

Ghazali et al., Malaysian Journal of Computing, 10 (1): 2084-2098, 2025

2091

Table 7(a). Complexity Defined for Transaction Function in MASMED2U.

Function Component Type FTR DET Complexity
Senarai Menu EQ 1 8 L
Menu Baru EI 1 9 L
Edit Menu EI,EQ 1 9 L
Senarai Peranan EQ 1 4 L
Daftar Baru Peranan EI 1 4 L
Senarai Pengguna dan Peranan EI,EQ 1 7 L,L
Daftar Baru tetapan Pengguna EI 1 12 L
Edit Tetapan Pengguna EI,EQ 1 13 L,L
Senarai Kategori Parameter EQ 1 5 L
Daftar Baru Kategori Parameter EI 1 5 L
Edit Kategori Parameter EI,EQ 1 5 L,L
Senarai Parameter EQ 1 6 L
Daftar Baru Parameter EI 1 6 L
Edit Parameter EI,EQ 1 6 L,L
Senarai MyEnt EQ 1 7 L
Daftar Baru MyEnt EI 1 22 M
Senarai Status dan Jumlah EQ 1 2 L
Kriteria Carian EQ 1 6 L
Senarai TKS EQ 1 10 L
Daftar Baru TKS EI 2 31 H
Edit TKS EI,EQ 2 31 M,M
Senarai Bil EQ 1 8 L
Daftar Baru Billing EI 1 4 L
Billing Information EI,EQ 1 9 L,L
Senarai Interview TKS EQ 1 6 L
Tambah Temuduga EI 1 6 L
Edit TKS EI,EQ 2 12 L,L
Edit Status EI,EQ 1 11 L,L
Senarai Pengeluaran Pinjaman EQ 1 7 L
Daftar Baru Pengeluaran Pinjaman EI 1 3 L
Edit Pengeluaran Pinjaman EI,EQ 2 12 M,M
Senarai Kategori Program EQ 1 7 L
Daftar Baru Kategori Program EI 1 8 L

Ghazali et al., Malaysian Journal of Computing, 10 (1): 2084-2098, 2025

2092

Table 7(b). Complexity Defined for Transaction Function in MASMED2U.

Function Component Type FTR DET Complexity
Edit Kategori Program EI,EQ 2 10 L,L
Daftar Baru Aktiviti EI 1 6 L
Edit Aktiviti EI,EQ 1 6 L,L
Senarai Program EQ 1 7 L
Daftar baru Program EI 1 9 L
Edit program EI,EQ 3 19 H,M
Tambah Pelajar EI 1 7 L
Update Overall Result EI,EQ 1 7 L,L
Senarai Mengikut Status EQ 1 6 L
Details Aktiviti EQ 2 8 M
Edit Aktiviti EI,EQ 1 6 L,L
Senarai Program EQ 1 7 L
Daftar baru Program EI 1 9 L
Edit program EI,EQ 3 19 H,M
Tambah Pelajar EI 1 7 L
Update Overall Result EI,EQ 1 7 L,L
Senarai Mengikut Status EQ 1 6 L
Details Aktiviti EQ 2 8 M

The second step, is to calculate Unadjusted Function Points (uFP), table 8 calculates the UFP in MASMED2U:

Table 8. Calculation for Unadjusted FP in MASMED2U.

Component
Type

Complexity Level
Low
(L)

Medium
(M)

High
(H)

Total

ILF 10 X 7 3 X 10 1 X 15 115
EIF 7 X 5 0 X 7 0 X 10 35
EI 23 X 3 3 X 4 2 X 6 93
EO 0 X 4 0 X 5 0 X 7 0
Eq 25 X 3 4 X 4 0 X 6 91
Total Unadjusted FP 334

Ghazali et al., Malaysian Journal of Computing, 10 (1): 2084-2098, 2025

2093

For the third step, we calculate Value Adjustment Factor (VAF). Table 9 derived the VAF results in
MASMED2U:

Table 9. Calculation for Value Adjustment Factor in MASMED2U.

General System Characteristic (GSC) (0-5) General System Characteristic (GSC) (0-5)

1. Data Communications 5 8. On-Line Update 5

2. Distributed Data Processing 3 9. Complex Processing 2

3. Performance 5 10. Reusability 0

4. Heavily Used Configuration 0 11. Installation Ease 0

5. Transaction Rate 5 12. Operational Ease 0

6. On-Line Data Entry 5 13. Multiple Sites 0

7. End-User Efficiency 5 14. Facilitate Change 0

TOTAL DEGREE OF INFLUENCE (TDI) SUM (1-14) 35

VALUE ADJUSTMENT FACTOR (VAF) (TDI * 0.01)+0.65 1.00

For the fourth step, based on equation 1, we calculate Adjusted Function Points (AFP),:

 𝐴𝐹𝑃 = 334 𝑥 1 = 334 (4)

This adjusted measure provides a comprehensive estimate of the software's functionality,
taking into account both its functional and non-functional aspects. For the fifth step, the effort for
system development in man-days based:

𝐸𝑓𝑓𝑜𝑟𝑡(𝑚𝑎𝑛𝑑𝑎𝑦𝑠) = 𝐴𝐹𝑃𝑥10/8 ℎ𝑜𝑢𝑟
 = 334 𝑥 10/ 8
 = 417.5 mandays

Next, the final step, the system development cost will be:

 𝐷𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡 𝐶𝑜𝑠𝑡: 334 𝑥 𝑅𝑀1200 = 𝑅𝑀400,800.00 (6)

4.2 FPA Comparison with Analogy-based Estimation

During the initial stages of the MASMED2U system development project, cost estimation was
conducted using the analogy-based estimation method. This approach involved estimating the
cost by multiplying the monthly salary corresponding to each job grade by the project’s
duration, which was set at 18 months. The project duration was determined based on previous
experience with similar system development projects, providing a reliable benchmark for the
estimation process. Table 10 defines the costing for MASMED2U at the initial stage:

(5)

Ghazali et al., Malaysian Journal of Computing, 10 (1): 2084-2098, 2025

2094

Table 10. Cost estimation for MASMED2U using Analogy-Based Estimation.

Project Item

One Time Cost (Rm)
Total
Cost
(RM)

Project
Component

(RM)

Human
Resource
(Existing)

Human
Resource

(Contract)

Humean
Resource (JV/

Outsource)

System Development
Technical Team:

 1 F48 (RM11761 x
 18 months)
 1 F44 (RM10504 x
 18 months)
 1 FA29 (RM5684 x
 18 months)

0 512,946.00 0 0
512,946.0
0

For comparison, as the project neared completion, we performed a software cost estimation using FPA for MASMED2U
based on 5.1.

Table 11 depicts the comparison of cost estimation value, using both methods, function point analysis and analogy-based
estimation:

Table 11. Comparison of Cost Estimation between FPA and Analogy based Estimation.

Estimation Method Function Point Analysis Analogy-based Estimation
Cost (RM) 400,800 512,946

Ghazali et al., Malaysian Journal of Computing, 10 (1): 2084-2098, 2025

2095

5. Discussion

The relationship between development cost and effort in FPA is intrinsically linked to the
accuracy of function point measurement. By providing a standardized way to assess software
size based on user requirements, FPA helps in predicting the required effort and associated
costs more accurately. This allows organizations to plan and allocate resources more
effectively, ensuring that projects are completed within budget while meeting functional
requirements (Albrecht, 1979; Jones, 1996). The result in table 10, depicts the calculated value
for analogy-based estimation. In common practices for analogy-based estimation, cost
estimation process is crucial at the early phases of software development. However, changes
may also occur in other phases, such as the development and deployment processes
(Seetharaman et al.,2005). This is due to the changing needs and requirements over time. It will
influence the software cost and the development effort.

The results in table 11, indicate that the calculation using FPA is more accurate. This
is because FPA includes both transaction functions and data functions, which contribute to the
overall system. On the other hand, analogy-based estimation method estimates the timeline and
cost based on the number of modules involved and the experience with similar previous
systems. In addition, this can be problematic as the previous systems might differ in domain
and business processes. The effectiveness of analogy-based estimation relies heavily on the
similarity between the new project and the past projects. If the new project differs significantly
in scope, technology, or requirements, the estimates may be inaccurate (Shepperd & Schofield,
1997).

There are several benefits and insights by using FPA. Calculation of effort and cost
provides a clear and quantifiable measure of the project's requirements, leading to more
accurate budget and scheduling forecasts. By applying the cost per Function Point, the
MASMED2U project was able to identify the total development cost effectively, facilitating
the cost saving calculation. FPA also enables the estimation accuracy and cost savings. It
provides more precise measurements of system size, leading to more accurate cost and timeline
estimates. The in-house development of MASMED2U, guided by FPA estimation, resulted in
significant cost savings compared to outsourcing or using less precise estimation methods.

6. Conclusion

Implementing Function Point Analysis (FPA) in the MASMED2U system development has
provided valuable insights into the effectiveness of this methodology for software size
estimation. FPA's structured approach, which involves quantifying functional components
based on user requirements, proved instrumental in achieving precise estimations for effort and
cost.One of the primary strengths of FPA is its ability to provide an objective measure of
software size by focusing on functionalities rather than code metrics or subjective assessments.
This approach helped in accurately estimating the total effort required for system development.
By applying the formula Effort in man-days, we could translate Function Points into practical
effort estimates. This method ensures that the estimated effort aligns with local industry
standards, enhancing the reliability of the project plan.

Furthermore, the cost estimation using FPA, calculated with Development Cost,
enabled precise financial forecasting. This calculation reflected the average development cost
in Malaysia, allowing for effective budget management and resource allocation. Reflecting on
the use of FPA, its application contributed to improved project planning and cost control. The
method provided a more comprehensive understanding of the system's requirements and
complexities, leading to more accurate and actionable estimates. However, it is also important
to recognize that while FPA offers significant advantages, its effectiveness depends on the
accuracy of the initial functional requirements and the consistent application of its principles
throughout the project lifecycle.

Ghazali et al., Malaysian Journal of Computing, 10 (1): 2084-2098, 2025

2096

The Function Point Analysis (FPA) method provides UiTM with a reliable, user-
centric approach for estimating the size, costs, and development timelines of software systems
at various project stages—whether in the initial phases, midway, or at completion. By adhering
to the IFPUG standard ISO/IEC 20926:2009, FPA addresses the limitations of traditional
estimation methods, ensuring more accurate and reliable project planning and budgeting. Its
application in projects like MASMED2U has demonstrated significant benefits, including
improved estimation precision and notable cost savings. For in-house projects, FPA aids in
calculating cost efficiencies, while for outsourced initiatives, it helps determine optimized
costs. This aligns with UiTM’s objectives and supports the Ministry of Higher Education’s
mission to cultivate entrepreneurial skills among students. Future research should explore the
broader applicability of FPA across diverse educational and entrepreneurial settings to further
validate its effectiveness and impact.

Acknowledgements

Myzatul Akmam Sapaat from Jabatan Digital Negara contributed valuable insights for the
reference on What Is the Cost of One IFPUG Method Function Point? – A Case Study by Beata
Czarnacka-Chrobot.

Funding

The author(s) received no specific funding for this work.

Author Contribution

Author1 wrote the literature review, method, result, reflection and discussion. Author2 wrote
the method and oversaw the article writing. Author3 and Author4 conducted the result
calculations and analysis.

Conflict of Interest

The authors have no conflicts of interest to declare.

References

Abdul Aziz, M., Mustakim, N. A., & Abdul Rahman, S. (2024). Decision tree and rule-based
classification for predicting online purchase behavior in Malaysia. Malaysian Journal of
Computing (MJoC), 9(2), 1905-1915.

Abran, A., & Nguyenkim, H. (1991). "Measurement of the Functional Size of Software: New
Variations on Old Themes." IEEE Transactions on Software Engineering, 17(7), 635-
643.

Albrecht, A. J. (1979). Measuring Application Development Productivity. Proceedings of the
IBM Application Development Symposium, 83-92.

Alshammari, F. H. (2022). Cost estimate in scrum project with the decision-based effort
estimation technique. Soft Computing, 26(20), 10993-11005.

Boehm, B. W. (1981). Software Engineering Economics. Prentice-Hall.

Ghazali et al., Malaysian Journal of Computing, 10 (1): 2084-2098, 2025

2097

Czarnacka-Chrobot, B. (2012). What Is the Cost of One IFPUG Method Function Point?-Case
Study. In Proceedings of the International Conference on Software Engineering
Research and Practice (SERP) (p. 1). The Steering Committee of The World Congress
in Computer Science, Computer Engineering and Applied Computing (WorldComp).

Davide, F., Giovanni, C. and Roberto, M. (2023) Estimating Software Functional Size via
Machine Learning.

Fenton, N. E., & Pfleeger, S. L. (2014). Software Metrics: A Rigorous and Practical Approach.
CRC Press.

Gencel, C., & Demirörs, O. (2008). "Functional Size Measurement Revisited." IEEE
Transactions on Software Engineering, 34(6), 796-810.

IFPUG (International Function Point Users Group). (2009). ISO/IEC 20926:2009 – Software
and Systems Engineering – Function Point Analysis – Counting Practices Manual.
IFPUG.

IFPUG (International Function Point Users Group). (2010). Function Point Counting Practices
Manual, Release 4.3.1.

Jones, C. (1996). Applied Software Measurement: Assuring Productivity and Quality.
McGraw-Hill.

Jørgensen, M. (2004). "A Review of Studies on Expert Estimation of Software Development
Effort." Journal of Systems and Software, 70(1-2), 37-60.

Jørgensen, M., & Sjøberg, D. I. K. (2004). "A Survey of Expert Estimation of Software
Development Effort." Empirical Software Engineering, 9(3), 223-249.

Kammy, M. and Ryan, H. (2020). But Wait, There's More! Using Simple Function Point
Analysis for Your Cost, Schedule & Performance Needs

Kumar, K. H., & Srinivas, K. (2023). Preliminary performance study of a brief review on
machine learning techniques for analogy based software effort estimation. Journal of
Ambient Intelligence and Humanized Computing, 14(3), 2141-2165.

Kemerer, C. F. (1990). Reliability of function points measurement: A field experiment.
Communications of the ACM, 33(2), 85-97.

McConnell, S. (1993). Code Complete: A Practical Handbook of Software Construction.
Microsoft Press.

Putnam, L. H. (1978). A General Empirical Solution to the Macro Software Sizing and
Estimating Problem. IEEE Transactions on Software Engineering, SE-4(4), 345-359.

Putnam, L. H. (1992). Long-Term High-Quality Software: A New Way of Measuring and
Estimating. Prentice-Hall.

Putnam, L. H., & Myers, W. (1997). Measures for Excellence: Reliable Software On Time,
Within Budget. Prentice-Hall.

Shepperd, M., & Schofield, C. (1997). "Estimating Software Project Effort Using Analogy."
IEEE Transactions on Software Engineering, 23(12), 736-743.

Ghazali et al., Malaysian Journal of Computing, 10 (1): 2084-2098, 2025

2098

Seetharaman,N., Senthilvelmurugam,M. and Subramanian,T. Budgeting & Accounting of
Software Cost. Journal of Digital AssetManagement. Vol. 1 No.5.pp 347-359.(2005).

Sharma, S., & Vijayvargiya, S. (2021). Applying soft computing techniques for software
project effort estimation modelling. In Nanoelectronics, Circuits and Communication
Systems: Proceeding of NCCS 2019 (pp. 211-227). Springer Singapore.

Symons, C. J. (1991). Function Point Analysis: Measurement Practices for Successful Software
Projects. John Wiley & Sons.

Van Hai, V., Nhung, H. L. T. K., Prokopova, Z., Silhavy, R., & Silhavy, P. (2022). Toward
improving the efficiency of software development effort estimation via clustering
analysis. IEEE Access, 10, 83249-83264.

Wei, X., Danny, H., Luiz, F. C. and Faheem, A. (2020). Updating Weight Values for Function
Point Counting.

Wideman, R. M. (2002). "Project Management and the Triple Constraint." Project
Management Knowledge Area, 1(1), 1-6

