ADSORPTION OF METHYLENE BLUE DYE ON ULTRASONIC ASSISTED PALM OIL EMPTY FRUIT BUNCH ACTIVATED CARBON

SITI NORZARIFAH NADIRAH BINTI NOR ZAHID

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Applied Chemistry in the Faculty of Applied Sciences Universiti Teknologi Mara

FEBRUARY 2025

ADSORPTION OF METHYLENE BLUE DYE ON ULTRASONIC ASSISTED PALM OIL EMPTY FRUIT BUNCH ACTIVATED CARBON

SITI NORZARIFAH NADIRAH BINTI NOR ZAHID

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Applied Chemistry in the Faculty of Applied Sciences Universiti Teknologi Mara

FEBRUARY 2025

This Final Year Project Report entitled "Adsorption of Methylene Blue Dye on Ultrasonic Assisted Palm Oil Empty Fruit Bunch Activated Carbon" was submitted by Siti Norzarifah Nadirah binti Nor Zahid in partial fulfillment of the requirements for the Degree of Bachelor of Science (Hons.) Applied Chemistry, in the Faculty of Applied Science and was approved by

Mohd Fauzi bin Abdullah
Supervisor
B. Sc. (Hons.) Applied Chemistry
Faculty of Applied Sciences
02600 Arau
Perlis

Dr. Siti Nurlia binti Ali Project Coordinator B.Sc. (Hons.) Applied Chemistry Faculty of Applied Sciences 02600 Arau Perlis Dr. Nur Nasulhah binti Kasim Head of Programme B.Sc. (Hons.) Applied Chemistry Faculty of Applied Sciences 02600 Arau Perlis

Date:

ABSTRACT

ADSORPTION OF METHYLENE BLUE DYE ON ULTRASONIC ASSISTED PALM OIL EMPTY FRUIT BUNCH ACTIVATED CARBON

This study explores the viability of palm oil empty fruit bunches (EFB) as a sustainable source for producing activated carbon (AC) to eliminate methylene blue (MB) dye from wastewater. The research centers on synthesizing AC through potassium hydroxide (KOH) activation, enhanced by ultrasonic treatment, to maximize adsorption efficiency. The EFB-based activated carbon (EFB-UAC) was characterized for physicochemical properties such as moisture content, ash content, bulk density, and iodine number, compared to conventionally produced AC (EFB-AC). Results indicated that EFB-UAC demonstrated superior performance with increased adsorption capacity and removal efficiency, attributed to enhanced porosity and availability of functional groups. Optimal adsorption parameters, including adsorbent dosage, contact time, and MB concentration, were determined, with EFB-UAC achieving up to 97% dye removal under optimal conditions. While effective, the study recognizes the constraints of laboratorycontrolled environments and the sole focus on MB. The findings highlight the dual advantages of utilizing agricultural waste for eco-friendly adsorbent production and enhancing wastewater treatment technologies. Future research should investigate the application of EFB-UAC for additional pollutants, evaluate scalability, and assess performance in real industrial contexts.

TABLE OF CONTENT

ABSTRACT ABSTRAK ACKNOWLEDGEMENT			iii
			iv
			v
	BLE OF CONTENT		Vì
LIST OF TABLES			viii
	ST OF FIGURES		ix
	ST OF SYMBOLS	NG.	X
LIS	ST OF ABBREVIATIO	PNS	xi
CH	APTER 1 INTRODUC	ΓΙΟΝ	
1.1	Background of study		1
1.2	Problem statement		3
1.3	2		4
1.4	3		5
1.5	Scope and limitation of study		5
СН	APTER 2 LITERATUI	RE REVIEW	
2.1	Textile waste		6
	2.1.1 Textile Wastew	ater	7
2.2	Dye		8
	2.2.1 Methylene Blue		10
2.3			11
2.4	Activated Carbon		13
2.5	Empty Fruit Bunch as activated carbon		14
2.6	Ultrasonic		
СН	APTER 3 METHODOI	LOGY	
3.1	Materials and chemica	als	20
3.2	Equipment and instru	nent	20
3.3	Method and procedure		21
	3.3.1 Preparation of activated carbon		21
	3.3.2 Characterization of palm oil empty fruit bunch (EFB)		22
	3.3.2.1 FTIR	Analysis	22
	3.3.2.2 Moist	ture content	23
	3.3.2.3 Ash (Content	24
	3.3.2.4 pH _{pzc}	Analysis	24
	3.3.2.5 Iodin	e Test	25
	3.3.2.6 Bulk	density	26
	3.3.3 Adsorption of m	nethylene blue assisted by ultrasonic	27
	3.3.3.1 Effec	t of adsorbent dosage	27
	3.3.3.2 Effec	t of contact time	28
	3.3.3.3 Effect	t of initial MB concentration	28