THE EFFECT OF CARBON BLACK IN ENHANCING TENSILE PROPERTIES OF ULTRA HIGH MOLECULAR WEIGHT POLYETHYLENE

AHMAD FIRDAUS BIN SUHAIMI

Final Year Project Report Submitted In
Partial Fulfilment of The of The Requirement for The
Degree Of Bachelor of Science (Hons.) Chemistry With Management
In The Faculty of Applied Scieence
Universiti Teknologi Mara

FEBRUARY 2025

This Final Year Project Report entitled "The Effect of Carbon Black In Enhancing Tensile Properties of Ultra High Molecular Weight Polyethylene" was submitted by Ahmad Firdaus Bin Suhaimi in partial fulfillment of the requirements for the Degree of Bachelor of Science (Hons.) Chemistry With Management, in the Faculty of Applied Sciences, and was approved by

Assoc. Prof. Dr. Razif Muhammed Nordin Supervisor B. Sc. (Hons.) Chemistry With Management Faculty of Applied Science Universiti Teknologi MARA (UiTM) 02600 Arau Perlis

-

Ts. Muhammad Salihin Zakaria
Co-supervisor
Faculty of Chemical Engineering and Technology
Universiti Malaysia Perlis (UniMAP)
02600 Arau
Perlis

Dr Siti Nurlia Ali
Project Coordinator
B. Sc. (Hons.) Chemistry With Management
Faculty of Applied Science
Universiti Teknologi MARA (UiTM)
02600 Arau
Perlis

Dr Nur Nasulhah Kasim Head Center of Studies Faculty of Applied Science Universiti Teknologi MARA (UiTM) 02600 Arau Perlis

Date:					
Hate .				4	\mathbf{r}
			•	ıtα	n

ABSTRACT

THE EFFECT OF CARBON BLACK IN ENHANCING TENSILE PROPERTIES OF ULTRA HIGH MOLECULAR WEIGHT POLYETHYLENE

This study aims to assess the impact of carbon black (CB) as a filler on the stiffness and mechanical strength of ultra-high molecular weight polyethylene (UHMWPE) which is a widely applied polymer with limitations with processing and resistance to creep. Solid-state compression molding was used to prepare composites of varying CB loading (1, 5, and 10 php) which were then subjected to analysis for tensile strength, morphology, and chemical composition. FTIR analysis showed that CB was successfully incorporated and the tensile tests showed a reduction in strength when CB loading was added with UHMWPE. Morphology studies indicated that increasing filler CB loading increased the distribution of the filler but also showed some agglomeration problems at higher loadings. These results show that when CB is evenly dispersed within UHMWPE, it enhances the polymer's stiffness and properties. This study showed the opposite trend from other studies whereby CB is a low-cost filler in improving the performance of UHMWPE for industrial and biomedical applications. More optimization of the mixing method and actual testing could increase the quality and reliability of the material.

TABLE OF CONTENT

	Page				
ABSTRACT	i				
ABSTRAK	ii				
ACKNOWLEDGEMENT	iii				
TABLE OF CONTENT	iv				
LIST OF TABLES	vi				
LIST OF FIGURES	vii				
LIST OF SYMBOLS	viii				
LIST OF ABBREVATIONS	ix				
CHAPTER 1 INTRODUCTION					
1.1 Background of Study	1				
1.2 Problem Statement	3				
1.3 Objectives	4				
1.4 Significant of Study	4				
1.5 Scope and Limitation of Study	6				
CHAPTER 2 LITERATURE REVIEW					
2.1 Polyethylene	7				
2.1.1 Introduction of Polyethylene	7				
2.1.2 History of Polyethylene	8				
2.2 Derivative of Polyethylene	8				
2.2.1 Low-Density Polyethylene (LDPE)	10				
2.2.2 Linear Low-Density Polyethylene	12				
2.2.3 High-Density Polyethylene (HDPE)	14				
2.2.4 Ultrahigh Molecular Weight Polyethylene	17				
(UHMWPE)	20				
2.3 Polyethylene Processing	20				
2.3.1 Melt mixing	21				
2.3.2 Solid-State Compression Molding	22				
2.4 Filler	24				
2.4.1 Carbon Black	25				
2.4.2 Tensile properties of the CB-filled polymer composite	28				
CHAPTER 3 METHODOLOGY	30				
3.1 Materials					
3.2 Polymer Mixing	30				
3.2.1 Preparation of Polymer Composite	30				
3.3 Analysis and Testing of Polymer Composite	31				
3.3.1 Functional Group Analysis	31				
3.3.1.1 Fourier Transform Infrared Spectroscopy 3.3.2 Morphology Analysis	31 33				

LIST OF ABBREVIATIONS

UHMWPE Ultra-high molecular weight polyethylene

CB Carbon Black

PE Polyethylene

HDPE High Density Polyethylene

LDPE Low Density Polyethylene

LLDPE Linear Low-Density Polyethylene

UV Ultraviolet

PPE Personal Protective Equipment

FTIR Fourier Transform Infrared Spectroscopy

ASTM The American Society for Testing and

Materials

ATR-FTIR Attenuated total reflectance - Fourier

Transform Infrared