PROPERTIES OF PARTICLEBOARD FROM OIL PALM TRUNK PARTICLES: INFLUENCES OF PARTICLE SIZE, RESIN CONTENT AND BOARD DENSITY

By

SITI NOR AIN BINTI TAMIRAN NOR SUZIANA BINTI SHAHRIMAN NOR ASHIKIN BINTI RAZAK

Final Project Submitted in Partial Fulfillment for the Diploma in Wood Industry, Faculty of Applied Science, Universiti Teknologi MARA Pahang

ACKNOWLEDGEMENT

بسمأللهألرحمنألرحيم

In the name of Allah, The most Gracious and The Most Merciful

First, and foremost our highest gratitude to Allah S.W.T for the strength and endurance given to us in the completion of the project. Without his blessing given to us our final project paper under the title properties of particleboard from oil palm trunk influences of particle sizes, resin content and board density would not have been successfully.

Our sincere gratitude and thanks to our advisor, Prof. Madya Dr. Jamaludin Kasim for his support and advice from the beginning until the end of our research. Without his guidance we would not be able to complete our project paper. We also love to say thank to our entire lecturer for their support and advises until this project is a success.

Thank you to all wood Industry staff, especially En.Sardey and all staff of wood industry because they as a lot effort time guidance in order to complete our thesis. Last but not least we would like to thank all our friends and our family which give us motivation and always support us. Thank you.

vi

TABLE OF CONTENTS

			Page	
APPROV	AL SHE	ET	ii	
			iii	
		EMENT	vi	
		5	ix	
		S	X	
			xi	
		VIATIONS	xii	
			xiii	
			xiv	
CHAPTE	R			
1.0		INTRODUCTION		
	1.1	Definition of Composite	1	
	1.2	Problem Statement	3	
	1.3	Justification	3	
	1.4	Objective	4	
2.0	LITE	LITERATURE REVIEW		
	2.1	Oil Palm	5	
	2.2	Distribution of Oil Palm	7	
	2.3	Uses of Oil Palm Biomass	8	
	2.4	Particleboard	9	
	2.5	Characteristic of Particleboard	9	
	2.6	Types of Particle Used in Particleboard Manufacture	10	
	2.7	Classification of Particleboard	11	
	2.8	Particle Size and Shape	12	
	2.9	Phenol Formaldehyde, PF	12	
	2.10	Application of Particleboard	13	
	2.11	Effect of Particle Sizes	15	
	2.12	Effect of Resin Content	16	
	2.13	Effect of Board Density	17	
3.0		TERIALS AND METHODS	18	
	3.1	Raw Material Preparation	18	
		3.1.1 Bulk Density	18	
		3.1.2 Particle Analysis	18	
		3.1.3. Flaking	19	

	3.1.5. Drying			
	3.1.6. Blending			
	3.1.7. Mat Forming			
	3.1.8. Cold Press			
	3.1.9. Hot Press			
		Of elasticity		
		Of Rupture		
		1		
		ling and Water Absorption		
4.0	RESULTS AND DISCUSSIONS			
	4.1 Bulk Density			
	4.2 Particle Analysis			
	4.3 Mechanical and Physical	Properties of Homogenous		
	Particleboard			
	4.3.1 Statistical Significant	icance		
		size		
		ontent		
		ensity		
	4.4 Mechanical and Physical			
		icance		
		ontent		
5.0	CONCLUSIONS			
iaia is is is	ICEC			
FERE	(CES			
PENDI	CES			
ГА				

ABSTRACT

PROPERTIES OF PARTICLEBOARD FROM OIL PALM TRUNK PARTICLES: INFLUENCES OF PARTICLE SIZE, RESIN CONTENT AND BOARD DENSITY (Elaeis guineensis)

By

SITI NOR AIN BINTI TAMIRAN NOR SUZIANA BINTI SHAHRIMAN NOR ASHIKIN BINTI RAZAK

May 2009

The properties of particleboard produced from oil palm trunk particles, *Elaeis guineensis* using phenol formaldehyde were studied. The influences of different particle sizes (1.0mm and 2.0 mm), resin content (7%, 9% and 11%) and target board densities (500 kg/m³, 600 kg/m³ and 700 kg/m³) were studied. The particleboard was tested for the physical and mechanical properties using the European standard. Increasing particle size would increase the mechanical and decrease the physical properties of the oil palm particleboard. The increasing in board density would increase the mechanical and decrease the physical properties of the oil palm particleboard. The increasing in resin content in the board would increase the mechanical and decrease the physical properties of the oil palm particleboard.