TEMPERATURE EFFECT ON THE PHOTOCATALYST & PHOTOELECTROCHEMICAL ON SYNTHESIZED g-C₃N₄ USING UREA & THIOUREA AS PRECURSOR

SITI IZZAH IRDINA BINTI ABDUL MANAF

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Chemistry with Management in the Faculty of Applied Sciences
Universiti Teknologi MARA

JANUARY 2025

This Final Year Project Report entitled "Temperature Effect on The Photocatalyst & Photoelectrochemical on Synthesized g-C₃N₄ using Urea & Thiourea as Precursor" was submitted by Siti Izzah Irdina binti Abdul Manaf in partial fulfilment of the requirements for the Degree of Bachelor of Science (Hons.) Chemistry with Management, in the Faculty of Applied Sciences, and was approved by

Prof. Ts. Dr. Mohd Azlan Mohd Ishak
Supervisor
B. Sc. (Hons.) Chemistry with Management
Faculty of Applied Sciences
Universiti Teknologi MARA
02600 Arau Perlis

Assoc. Prof. Dr. Wan Izhan Nawawi Wan Ismail
Co-Supervisor
B. Sc. (Hons.) Chemistry with Management
Faculty of Applied Sciences
Universiti Teknologi MARA
02600 Arau Perlis

Dr. Siti Nurlia Ali Coordinator B. Sc. (Hons.) Chemistry with Management Faculty of Applied Sciences Universiti Teknologi MARA 02600 Arau Perlis Dr. Nur Nasulhah Kasim Head of Programme B. Sc. (Hons.) Chemistry with Management Faculty of Applied Sciences Universiti Teknologi MARA 02600 Arau Perlis

Date:		

ABSTRACT

TEMPERATURE EFFECT ON THE PHOTOCATALYST & PHOTOELECTROCHEMICAL ON SYNTHESIZED g-C₃N₄ USING UREA & THIOUREA AS PRECURSOR

The temperature effect on the photocatalyst and synthesized g-C₃N₄ using urea & thiourea as precursor were ascertained. The effects of different temperatures (400, 450, 500, 550, and 600 °C) and heating rates (3, 5, and 10 °C/min) were determined. The results showed that the temperature of 500 °C and the heating rate of 5 °C/min for urea had potential to give the best structural, morphological, and optical characteristics of g-C₃N₄ which labelled as U550-H5. For thiourea, the sample that can enhance the performance of photocatalysis process is TU450-H5 which its temperature is at 450 °C and 5 °C/min. RR4 dye was used to measure the photocatalytic activity when exposed to visible light. EIS, LSV, and the chronoamperometry concept were used to measure the photoelectrochemical study. EIS analysis shows that U550-H5 with the help of light is performing better than TU450-H5 since it is resulting in smaller semicircle which represent the lower of R_{ct}. In LSV analysis, it was observed that no significant differences since U550-H5 and TU450-H5 show the high current in onset potential. Based on chronoamperometry analysis, U550-H5 exhibited the highest and stable photocurrent response while TU450-H5 demonstrated the lowest and unstable. The synthesized g-C₃N₄ samples were then analysed using characterization methods (FTIR and FESEM-EDX). For FTIR, it was demonstrated that urea sample at 5 °C/min leading in a more extensive aromatic since it has a stronger CH-bending vibration peak at 1236 cm⁻¹. A closer look in differentiate the temperature of urea sample indicates that the absorption peaks at 1551 cm⁻¹ is very sharp in U550-H5 compared to others. For thiourea, TU450-H10 has the highest intensity of the NH group. By differentiating its temperature, the peak approximately 1680 cm⁻¹ associated with C=S stretching in TU450-H5 shows more intense than other samples. FESEM-EDX shows that U550-H5 contain 64.8% of N higher than TU450-H5 which contain 58.3%.

Table of Contents

ABSTRACT	iii
ABSTRAK	iv
ACKNOWLEDGEMENTS	v
TABLE OF CONTENTS	vi
LIST OF TABLES	viii
LIST OF FIGURES	ix
LIST OF SYMBOLS	xii
LIST OF ABBREVIATIONS	xii
CHAPTER 1 INTRODUCTION	1
1.1 Background of Study	1
1.2Problem Statement	3
1.3Significance of Study	4
1.4 Objectives of Study	5
1.5 Scope and Limitation of Study	6
CHAPTER 2 LITERATURE REVIEW	
2.1 Photocatalysis	7
2.1.1 Semiconductor	9
2.2 g-C ₃ N ₄ as Photocatalyst Semiconductor	11
2.2.1 Optical Properties of g-C ₃ N ₄	13
2.2.2 Stability of g-C ₃ N ₄	13
2.3 Crystal Structure of Idealized g-C ₃ N ₄	15
2.4 Preparation of g-C ₃ N ₄ by Different Precursors	17
2.5 Precursor	20
2.5.1 Urea	20
2.5.2 Thiourea	21
2.5.3 Effect Temperature in Forming g-C ₃ N ₄ using Urea	23
2.5.4 Effect Temperature in Forming g-C ₃ N ₄ using Thiourea	24
2.6 Reactive Red 4 Dye	26
2.7 Photoelectrochemical	
2.7.1 Linear Sweep Voltammetry	28
2.7.2 Electrochemical Impedance Spectroscopy	31
2.7.3 Chronoamperometry	33

CHAPTER 3 METHODOLOGY	35
3.1 Introduction	
3.2 Chemicals, Apparatus, and Instruments	
3.3 Method	37
3.3.1 Preparation of g-C ₃ N ₄	37
3.3.2 Photocatalytic Study	38
3.3.3 Response Surface Methodology	39
3.3.4 Photoelectrochemical Study	40
3.3.5 Characterization of g-C ₃ N ₄	41
CHAPTER 4 RESULTS AND DISCUSSION	43
4.1 Introduction	43
4.2 Characterization of g-C ₃ N ₄	
4.2.1 Fourier Transform Infrared Spectroscopy Results	45
4.2.2 Field-Emission Scanning Electron Microscope with Energy Dispo X-ray and Elemental Mapping Image	ersive 53
4.3 Photoelectrochemical	56
4.3.1 Nyquist Plot of Electron Impedance Spectrometry	56
4.3.2 Linear Sweep Voltammetry Graph	58
4.3.3 Chronoamperometry Plot	61
4.4 Photodegradation	63
4.4.1 Central Composite Design of Response Surface Methodology	63
4.4.2 Photocatalytic Degradation of Reactive Red 4 Dye	72
CHAPTER 5 CONCLUSION AND RECOMMENDATION	80
5.1 Conclusion	80
5.2 Recommendation	83
REFERENCES	
APPENDICES	
CURRICULUM VITAE	