ADSORPTIVE REMOVAL OF METHYLENE BLUE USING ACTIVATED CARBON DERIVED FROM COCONUT SHELL

MUHAMMAD IRFAN DANIAL BIN MOHD ZAILANI

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Applied Chemistry in the Faculty of Applied Sciences Universiti Teknologi MARA

AUGUST 2024

SUBMISSION FOR EVALUATION FINAL YEAR PROJECT 2 - RESEARCH PROJECT

Adsorptive Removal of Methylene Blue Using Activated Carbon Derived From Coconut Shell

Name	:	MUHAMMAD IRFAN DANIAL BIN MOHD ZAILANI
Student ID	:	2021887254
Program	:	RAS2456B
Course code	:	FSG671
Mobile Phone	:	
E-mail	:	2021887254@student.uitm.edu.my

Approval by Main Supervisor:

I certify that the work conducted by the above student is completed and approve this report to be submitted for evaluation.

Supervisor's name	:	DR ZAIDI BIN AB GHANI
Date	:	25/7/2024
Turnitin Similarity %	:	23%
Signature	:	

ABSTRACT

ADSORPTIVE REMOVAL OF METHYLENE BLUE USING ACTIVATED CARBON DERIVED FROM COCONUT SHELL

In this study, coconut shell activated carbon (CS-AC) activated by zinc chloride (ZnCl₂), utilized as an adsorbent to remove methylene blue (MB) from aqueous solutions. The CS-AC exhibited an acidity value of 5.4 and some functional groups based on Fourier Transform Infrared Spectroscopy, (FTIR) analysis. Batch experiments were conducted to investigate the effects of the adsorption parameters, such as adsorbent dosage, initial MB concentration, contact time, initial pH, and temperature. The experimental data were analyzed using Langmuir, Freundlich and Temkin adsorption isotherm models. Based on the correlation coefficient, (R^2) results, the Langmuir isotherm model provided the best fit for the adsorption of MB onto CS-AC, with a calculated maximum monolayer adsorption capacity, q_{max} of 214.53 mg/g. Adsorption kinetics were analyzed using pseudo-first-order (PFO), pseudo-second-order (PSO), and Intraparticle diffusion (IPD) models. The R^2 results indicated that the PSO model is more accurately described the adsorption kinetics. The van't Hoffman plot (q_t versus $t^{\frac{1}{2}}$) indicated multi-linearity, involving multiple steps in the adsorption process. Thermodynamic parameters were determined over the temperature range of 25 to 34°C, resulting in ΔG° value was negative while ΔH° values was positive, indicating a spontaneous and endothermic adsorption process. The positive value of ΔS° suggested increased randomness of MB molecules towards CS-AC. The result from this study indicated that CS-AC as a good adsorbent for the removal of MB and could pave the way for more low-cost adsorbents for dye removal from water and wastewater.

TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENT	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF ABBREVIATIONS	viii
ABSTRACT	i
ABSTRAK	ii

CHAPTER 1: INTRODUCTION

1
3
3
4
4
5
6

CHAPTER 2: LITERATURE REVIEW

2.1 Dye	8
2.2 Methylene Blue (MB)	10
2.2.1 Properties of MB	10
2.2.2 Applications of MB	11
2.2.3 Toxicity of MB	12
2.3 Adsorption	14
2.4 Activated Carbon (AC) as an Adsorbent	17
2.4.1 Properties of AC	17
2.4.2 Types of AC	18
2.4.2.1 Powdered AC (PAC)	19
2.4.2.2 Granular AC (GAC)	20
2.4.2.3 AC Pellet (ACP)	20
2.4.3 Production of AC	21
2.5 Parameters Affecting Adsorption	23
2.5.1 Effect of adsorbent dosage	24
2.5.2 Effect of initial MB concentration	26
2.5.3 Effect of contact time	27
2.5.4 Effect of initial pH	29
2.5.5 Effect of temperature	31
2.6 Adsorption Isotherm Models	33
2.6.1 Langmuir Isotherm	33

2.6.2 Freundlich Isotherm	35
2.6.3 Temkin Isotherm	37
2.7 Adsorption Kinetics Models	38
2.7.1 Pseudo-first order (PFO)	39
2.7.2 Pseudo-second order (PSO)	40
2.7.3 Intraparticle Diffusion	40
2.8 Adsorption Thermodynamics	41

CHAPTER 3: METHODOLOGY

3.1 Materials	45
3.2 Activated carbon acidity	45
3.3 Characterization of activated carbon	45
3.4 Batch adsorption experiment	46
3.4.1 Effect of adsorbent dosage	47
3.4.2 Effect of initial MB concentration	47
3.4.3 Effect of contact time	48
3.4.4 Effect of initial pH	48
3.4.5 Effect of temperature	49
3.5 Adsorption isotherm	49
3.6 Adsorption kinetics	50
3.7 Adsorption thermodynamic	50

CHAPTER 4: RESULTS AND DISCUSSIONS

4.1 Activated carbon acidity	51
4.2 Characterization of activated carbon	52
4.3 Effect of adsorbent dosage	54
4.2 Effect of initial MB concentration	55
4.5 Effect of contact time	56
4.6 Effect of initial pH	58
4.7 Effect of temperature	60
4.8 Adsorption isotherm	61
4.9 Adsorption kinetics	66
4.10 Adsorption thermodynamics	70

CHAPTER 5: CONCLUSION AND RECOMMENDATIONS5.1 Conclusion725.2 Recommendations73

CITED REFERENCES	74
APPENDICES	82
CURRICULUM VITAE	87