ADSORPTIVE REMOVAL OF METHYLENE BLUE

BY USING ACTIVATED CARBON DERIVED FROM

MUHAMMAD ADAM DANIAL BIN MOHD YUSRI

BACHELOR OF SCIENCE (Hons.)

APPLIED CHEMISTRY

AUGUST 2024

SUBMISSION FOR EVALUATION FINAL YEAR PROJECT 2 - RESEARCH PROJECT

ADSORPTIVE REMOVAL OF METHYLENE BLUE BY USING ACTIVATED CARBON DERIVED FROM WASTE COFFEE GROUNDS

Name	:	MUHAMMAD ADAM DANIAL BIN MOHD YUSRI
Student ID	1	2021868758
Program	1	AS245
Course code	:	FSG671
Mobile Phone	:	2
E-mail	:	2021868758@student.uitm.edu.my

Approval by Main Supervisor:

I certify that the work conducted by the above student is completed and approve this report to be submitted for evaluation.

Supervisor's name :

Date : Turnitin Similarity % DR. ZAIDI DIN AB GHA PENSYARAH KANAN KIMI-Signature SAKULTI SAINS GUNAAN UNIVERSITI TEKNOLOGI MAR-UITMI CAWANGAN PERI IS

ADSORPTIVE REMOVAL OF METHYLENE BLUE BY USING ACTIVATED CARBON DERIVED FROM WASTE COFFEE GROUNDS

MUHAMMAD ADAM DANIAL BIN MOHD YUSRI

Final Year Project Proposal Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Applied Chemistry In the Faculty of Applied Sciences Universiti Teknologi MARA

AUGUST 2024

TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENTS	ii
TABLE OF CONTENTS	iii
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF ABBREVIATIONS	vii
ABSTRACT	Х
ABSTRAK	xi

CHAPTER 1 : INTRODUCTION

1.1	Research Background	1
1.2	Problem Statement	3
1.3	Research questions	5
1.4	Objectives	5
1.5	Scope and Limitation of Study	6
1.6	Significance of Study	7
1.7	Expected Output/Outcomes/Implication	8

CHAPTER 2 : LITERATURE REVIEW

2.1	Dyes as Water Pollutant	9
2.2	Methylene Blue Dye	10
	2.2.1 Properties of methylene blue	11
	2.2.2 Application and uses	12
	2.2.3 Environmental impact and toxicity	13
2.3	Chemical Treatments 2.3.1 Ozonation 2.3.2 Chemical coagulation 2.3.3 Electrochemical	14 14 16 16
2.4	Physical Treatments	17
	2.4.1 Membrane Filtration	18
	2.4.2 Coagulation and Flocculation 2.4.3 Adsorption	19 20
2.5	Activated Carbon as Adsorbent	22
	2.5.1 Characteristic of activated carbon	23

ABSTRACT

Adsorptive removal of Methylene Blue

by using Activated Carbon Derived from Waste Coffee Grounds

In this study, the waste coffee grounds-derived activated carbon (CSG-AC) used was prepared via zinc chloride (ZnCl₂) activation. CSG-AC is used as an adsorbent to remove methylene blue (MB) from the aqueous solutions. The effects of adsorbent dosage, initial concentration, contact time, solution pH, and temperature were studied in batch experiments. The experimental data were analysed by the Langmuir, Freundlich, and Temkin adsorption isotherm models. Based on correlation coefficient results (0.9998), the Langmuir isotherm model provided the best fit for the adsorption of MB onto CSG-AC. The maximum monolayer adsorption of MB onto CSG-AC was calculated to be 176 mg/g. Kinetic parameters were evaluated based on pseudo-first-order (PFO), pseudo-second-order (PSO) and Weber-Morris intraparticle diffusion (IPD) kinetic models. The regression results showed that a PSO model is more accurately representing the adsorption kinetics. The plot of q_t versus $t^{1/2}$ for the IPD model represented multi-linearity and proved that the adsorption processes occurred in more than one step. Thermodynamic parameters were determined between temperatures of 25 to 34 °C. The ΔG° values were negative while the ΔH° values were positive and the overall adsorption process was determined as spontaneous and endothermic. While the positive value of ΔS° proposed good affinity of the MB molecules toward the CSG-AC. The results from this study suggested that CSG-AC could be a viable adsorbent in managing higher concentrations of dyes from water and wastewater.