

**SYNTHESIS OF CeO₂ NANOPARTICLE-SUPPORTED
GOLD CATALYST (Au-CeO₂) FOR *p*-NITROPHENOL
REDUCTION**

MOHAMAD ZUHAIRI BIN ABDUL RAHMAN

**BACHELOR OF SCIENCE (Hons.)
APPLIED CHEMISTRY
FACULTY OF APPLIED SCIENCES
UNIVERSITI TEKNOLOGI MARA**

AUGUST 2024

**SYNTHESIS OF CeO₂ NANOPARTICLE-SUPPORTED GOLD
CATALYST (Au-CeO₂) FOR *p*-NITROPHENOL
REDUCTION**

MOHAMAD ZUHAIRI BIN ABDUL RAHMAN

**BACHELOR OF SCIENCE (Hons) APPLIED CHEMISTRY
FACULTY APPLIED SCIENCES
UNIVERSITI TEKNOLOGI MARA**

AUGUST 2024

**SUBMISSION FOR EVALUATION
FINAL YEAR PROJECT 2 - RESEARCH PROJECT/ CRITICAL REVIEW/ CASE
STUDY**

**Synthesis of CeO₂ Nanoparticle-Supported Gold
Catalyst (Au-CeO₂) for *p*-Nitrophenol
Reduction**

Name : Mohamad Zuhairi Bin Abdul Rahman
Student ID : 2021494546
Program : AS245
Course code : FSG671
Mobile Phone :
E-mail : 2021494546@student.uitm.edu.my

**Please attach the Turnitin summary report, with your name clearly stated, at the end of your report and submit it together.*

Approval by Main Supervisor:

I certify that the work conducted by the above student is completed and approve this report to be submitted for evaluation.

Supervisor's name : Hanani Binti Yazid
Date : 25/7/2024
Turnitin Similarity % : 9%
Signature :

ABSTRACT

SYNTHESIS OF CeO₂ NANOPARTICLE-SUPPORTED GOLD CATALYST (Au-CeO₂) FOR *p*-NITROPHENOL REDUCTION

The reduction of *p*-nitrophenol (*p*-NP) is a well-studied reaction and serves as an important model for evaluating catalyst activity. This study used a simple synthesis method to prepare cerium oxide (CeO₂) support using chemical (A) and co-precipitation (B) methods. Gold (Au) was then deposited on the cerium oxide support using the deposition-precipitation (DP) method presented in the work. Cerium oxide support was prepared by mixing cerium nitrate with ammonia solution and potassium carbonate using chemical precipitation and co-precipitation techniques, respectively. The resulting particles were characterised using Fourier Transform Infrared spectroscopy (FTIR), which showed peaks at 3320, 1320, and 500 cm⁻¹, indicating O-H stretching, O-H bending, and Ce-O groups, respectively. Additionally, a small peak at 1630 cm⁻¹ indicated the presence of CO₃²⁻ impurities from the preparation process. The X-ray diffraction (XRD) pattern for both samples indicated cerium oxide with a cubic fluorite crystalline structure (JCPDS No. 01-075-0076). Furthermore, the characterisation of Au-CeO₂-A and Au-CeO₂-B by FTIR confirmed the immobilisation of Au on the CeO₂ support due to band shifting of the support peaks. Both catalysts showed 100% conversion to *p*-aminophenol, with a rate constant (k) of 5.78 x 10⁻⁴ s⁻¹ for Au-CeO₂-A and 4.37 x 10⁻⁴ s⁻¹ for Au-CeO₂-B.

TABLE OF CONTENTS

	Page
ABSTRACT	iii
ABSTRAK	iv
ACKNOWLEDGEMENTS	v
TABLE OF CONTENTS	vi
LIST OF TABLES	viii
LIST OF FIGURES	ix
LIST OF TABLES	xi
LIST OF SYMBOLS	xii
LIST OF ABBREVIATIONS	xiii
CHAPTER 1: INTRODUCTION	
1.1 Background of Study	1
1.2 Problem Statement	2
1.3 Significance of Study	4
1.4 Objective of Study	4
1.5 Scope and Limitations of Study	4
CHAPTER 2: LITERATURE REVIEW	
2.1 Cerium Oxide, CeO ₂	6
2.2 Preparation Method of CeO ₂	7
2.2.1 Co-precipitation	7
2.2.2 Chemical Precipitation	9
2.3 Structural Study of CeO ₂ Nanoparticles	12
2.3.1 Fourier Transform Infrared (FTIR) Spectroscopy	12
2.3.2 X-ray Diffraction (XRD)	14
2.3.3 Field Emission Scanning Electron Microscope (FESEM)	15
2.4 Supported Catalyst	16
2.4.1 Supported Gold Nanoparticle	16
2.4.2 Au-CeO ₂ via Deposition-precipitation Method	16
2.5 Catalytic Study for p-Nitrophenol Reduction	17
CHAPTER 3: METHODOLOGY	
3.1 Material	20
3.2 Preparations Method	20
3.2.1 Co-precipitation	20
3.2.2 Chemical Precipitation	21
3.2.3 Catalytic Study for <i>p</i> -Nitrophenol Reduction	21
3.3 Characterizations	22