# ANODIC ALUMINUM OXIDE-SUPPORTED GOLD CATALYST (Au-AAO) FOR *p*-NITROPHENOL REDUCTION

NURUL HANIS NABILAH BINTI AHMAD FAIZAL

BACHELOR OF SCIENCE (Hons.) APPLIED CHEMISTRY FACULTY OF APPLIED SCIENCES UNIVERSITI TEKNOLOGI MARA

**AUGUST 2024** 



## SUBMISSION FOR EVALUATION FINAL YEAR PROJECT 2 - RESEARCH PROJECT

## ANODIC ALUMINUM OXIDE-SUPPORTED GOLD CATALYST (Au-AAO) FOR *p*-NITROPHENOL REDUCTION

| Name         | : | Nurul Hanis Nabilah binti Ahmad Faizal        |
|--------------|---|-----------------------------------------------|
| Student ID   | : | 2021816912                                    |
| Program      | : | Bachelor of Science (Hons.) Applied Chemistry |
| Course code  | : | FSG671                                        |
| Mobile Phone | : |                                               |
| E-mail       | : | 2021816912@student.uitm.edu.my                |

\* Please attach the Turnitin summary report, with your name clearly stated, at the end of your report and submit it together.

### Approval by Main Supervisor :

I certify that the work conducted by the above student is completed and approve this report to be submitted for evaluation.

| Supervisor's name     | : | Hanani binti Yazid |
|-----------------------|---|--------------------|
| Date                  | : | 25 July 2024       |
| Turnitin Similarity % | : | 3                  |
| Signature             | : |                    |

## ANODIC ALUMINUM OXIDE-SUPPORTED GOLD CATALYST (Au-AAO) FOR *p*-NITROPHENOL REDUCTION

NURUL HANIS NABILAH BINTI AHMAD FAIZAL

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Applied Chemistry in the Faculty of Applied Sciences Universiti Teknologi MARA

AUGUST 2024

## **TABLE OF CONTENT**

| ACKNOWLEDGEMENT       | iii  |
|-----------------------|------|
| TABLE OF CONTENT      | iv   |
| LIST OF TABLES        | vii  |
| LIST OF FIGURES       | viii |
| LIST OF PLATES        | Х    |
| LIST OF SCHEMES       | xi   |
| LIST OF ABBREVIATIONS | xii  |
| LIST OF SYMBOLS       | XV   |
| ABSTRACT              | xvi  |
| ABSTRAK               | xvii |

# **CHAPTER 1 INTRODUCTION**

| 1.1 | Background of Study   | 1 |
|-----|-----------------------|---|
| 1.2 | Problem Statement     | 2 |
| 1.3 | Research Questions    | 3 |
| 1.4 | Objectives of Study   | 4 |
| 1.5 | Significance of Study | 4 |
| 1.6 | Scope and Limitation  | 5 |

# **CHAPTER 2 LITERATURE REVIEW**

| 2.1 Anodic Aluminum Oxide (AAO) |                                                   | 6  |
|---------------------------------|---------------------------------------------------|----|
| 2.1.1                           | Fabrication of Anodic Aluminum Oxide (AAO)        | 8  |
| 2.1.2                           | Structural Form of Anodic Aluminum Oxide (AAO)    | 9  |
| 2.1.2.1                         | 2.1.2.1 AAO Nanoporous Membrane                   |    |
| 2.1.2.2                         | AAO Wires                                         | 11 |
| 2.2 Me                          | tal Nanoparticles: Supported Gold (Au) Catalyst   | 13 |
| 2.2.1                           | Synthesize Method of Supported Gold (Au) Catalyst | 13 |
| 2.2.1.1                         | Co-Precipitation (CP)                             | 14 |
| 2.2.1.2                         | Impregnation (IMP)                                | 15 |
| 2.2.1.3                         | Deposition-Precipitation (DP)                     | 17 |
| 2.2.2                           | Properties of Gold (Au) Catalyst                  | 19 |
| 2.2.2.1                         | Size-Dependent Optical                            | 20 |

#### ABSTRACT

### ANODIC ALUMINUM OXIDE-SUPPORTED GOLD CATALYST (Au-AAO) FOR *p*-NITROPHENOL REDUCTION

Anodic aluminum oxide (AAO) demonstrates significant potential as catalyst support due to its strong mechanical properties, excellent thermal stability and adjustable pore size. However, the efficiency of AAO in wire form under similar anodization conditions remains unexplored. This study aims to evaluate the efficiency of AAO in nanoporous membranes and wire forms as a support for gold (Au) for the catalytic reduction of *p*-nitrophenol (*p*-NP). Both AAO forms were fabricated using an electrochemical anodization method with identical anodization parameters (electrolyte, voltage, and temperature) followed by a depositionprecipitation (DP) technique to deposit gold onto the AAO surface producing Au/mAAO and Au/wAAO catalysts. The Au/AAO catalysts were characterized using Fourier Transform Infrared Spectroscopy (FTIR) revealing shifts from 3453 cm<sup>-1</sup> to 3461 cm<sup>-1</sup> for Au/mAAO and 3434 cm<sup>-1</sup> to 3438 cm<sup>-1</sup> for Au/wAAO correspond to O-H group due to gold attachment. The catalytic activity of Au/mAAO and Au/wAAO were assessed by Ultraviolet-Visible Spectroscopy (UV-Vis), which showed rate constants (k) of  $4.24 \times 10^{-3}$  s<sup>-1</sup> for Au/mAAO and  $4.31 \times 10^{-4}$  s<sup>-1</sup> for Au/wAAO. According to the result, Au/mAAO shows better activity for the catalytic reduction of *p*-nitrophenol. It was subsequently analyzed using Field-Emission Scanning Electron Microscopy (FE-SEM). FE-SEM image revealed that Au/mAAO has closely packed and regular-shaped holes with an average AAO pore size of 76.75±11.29 nm and size of Au nanoparticles (NPs) scattered near the pore region had an average size of  $16.03\pm5.54$  nm. Hence, future research should focus on developing more efficient catalysts by exploring other AAO structures and utilizing advanced laboratory instruments such as X-Ray Diffraction (XRD) and Inductive Coupled Plasma Optical Emission Spectroscopy (ICP-OES) for characterization.