FISH GELATIN-BASED BIODEGRADABLE PLASTIC: A COMPREHENSIVE REVIEW OF SYNTHESIS METHODS AND ENVIRONMENTAL IMPLICATION

NURUL NAJIHAH BINTI JUSOH

BACHELOR OF SCIENCES (Hons.) APPLIED CHEMISTRY FACULTY OF APPLIED SCIENCES UNIVERSITI TEKNOLOGI MARA

AUGUST 2024

SUBMISSION FOR EVALUATION FINAL YEAR PROJECT 2 - CRITICAL REVIEW

Fish Gelatin-Based Biodegradable Plastics: A Comprehensive Review of Synthesis Methods and Environmental Implications

Name	: Nurul Najihah binti Jusoh
Student ID	: 2021885792
Program	: Bachelor of Science (Hons.) Applied Chemistry
Course code	: AS245
Mobile Phone	:
E-mail	: 2021885792@student.uitm.edu.my

Approval by Main Supervisor:

I certify that the work conducted by the above student is completed and approve this report to be submitted for evaluation.

Supervisor's name	: Puan Salamiah binti Zakaria
Date	: 26 July 2024
Turnitin Similarity %	: 4%
Signature	:

FISH GELATIN-BASED BIODEGRADABLE PLASTIC: A COMPREHENSIVE REVIEW OF SYNTHESIS METHODS AND ENVIRONMENTAL IMPLICATION

NURUL NAJIHAH BINTI JUSOH

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Applied Chemistry In the Faculty of Applied Sciences Universiti Teknologi MARA

AUGUST 2024

TABLE OF CONTENT

	Page
ACKNOWLEDGEMENT	ii
TABLE OF CONTENTS	iii
LIST OF TABLES	iv
LIST OF ABBREVIATIONS	v
LIST OF SYMBOLS	vi
ABSTRACT	vii
ABSTRAK	viii

CHAPTER 1 INTRODUCTION		1
1.1	Background of study	1
1.2	Problem statement	4
1.3	Research question	6
1.4	General objectives	6
1.5	Significant of study	6

СНА	PTER 2 LITERATURE REVI	EW	8
2.1	Biodegradable plastic		8
2.2	Synthesis methods for fish gela	atin biodegradable plastic:	13
	modification techniques for im	proving plastic properties	
	2.2.1 Natural active agent cro	osslinking modification	14
	2.2.2 Chemical agent crosslin	nking modification	17
	2.2.3 Blending with other po	lymers	19
	2.2.4 nanoparticle addition		21
2.3	Environmental impact assessm	ent	25
	2.3.1 Biodegradability of fish	1 gelatin-based plastic	25
	2.3.2 Food safety and preserv	vation	26
СНА	PTER 3 CONCLUSION AND	RECOMMENDATION	28
3.1	Conclusion		28
3.2	Recommendation		30

CITED REFERENCES31CURRICULUM VITAE37

ABSTRACT

FISH GELATIN-BASED BIODEGRADABLE PLASTIC: A COMPREHENSIVE REVIEW OF SYNTHESIS METHODS AND ENVIRONMENTAL IMPLICATION

This review aims to delve into the development and implications of fish gelatinbased biodegradable plastics as a sustainable alternative to traditional petrochemical plastics. This study reviews the preparation of fish gelatin films through diverse methods like crosslinking of natural active agents, chemical agents, polymer blending, and addition of nanoparticles for the enhancement of mechanical, thermal, and barrier properties. From the review, the best method is crosslinking of natural active agents using transglutaminase. These techniques demonstrate that the performance enhancement of fish gelatin-based plastics for food packaging and biomedical uses is drastic. The environmental impacts of these biodegradable plastics are assessed, with a particular focus on their biodegradability. Fish gelatin-based plastics exhibit favorable biodegradability under appropriate environmental conditions.