QOID SYAUQI SYAHID BIN MOHAMMED

AS245 FSG

UiTM 2024

COMPARISON STUDY ON PT DECORATED BISMUTH TUNGSTATE GRAPHITIC CARBON NITRIDE UNDER BATCHWISE AND ONE STEP PREPARATION TECHNIQUES FOR PHOTODEGRADATION OF RR4 DYE

QOID SYAUQI SYAHID BIN MOHAMMED

BACHELOR OF SCIENCE (Hons.) APPLIED CHEMISTRY FACULTY OF APPLIED SCIENCES UNIVERSITI TEKNOLOGI MARA

AUGUST 2024

SUBMISSION FOR EVALUATION FINAL YEAR PROJECT 2 - RESEARCH PROJECT

Comparison Study on Platinum decorated Bismuth Tungstate Graphitic Carbon Nitride under Batchwise and One Step Preparation techniques for Photodegradation of RR4 dye

Name	:	Qoid Syauqi Syahid Bin Mohammed
Student ID	:	2021888386
Program	:	AS 245
Course code	:	FSG 671
Mobile Phone	:	
E-mail	:	qoidsyauqi@gmail.com

Approval by Main Supervisor :

I certify that the work conducted by the above student is completed and approve this report to be submitted for evaluation.

Supervisor's name	:	Prof Ts Dr Mohd Azlan Bin Mohd Ishak
Date	:	26 th July 2024
Turnitin Similarity %	:	22 %
Signature	:	

Prof. Ts. Dr. Mohd Azlan Mohd Ishak Faculty of Applied Sciences Universiti Teknologi MARA, Perlis Branch 02600 Arau, Perlis, Malaysia

ABSTRACT

COMPARISON STUDY ON PLATINUM DECORATED BISMUTH TUNGSTATE / GRAPHITIC CARBON NITRIDE UNDER BATCHWISE AND ONE-STEP PREPARATION TECHNIQUE FOR PHOTODEGRADATION OF RR4 DYE

The fabrication of Z-Scheme heterojunction comprising photocatalysts Bi₂WO₆ & g-C₃N₄ doped with platinum was successfully synthesized by two distinctive methods; batchwise & one-step to degrade model pollutant, RR4 dye. In batchwise method, Bi₂WO₆ is combined with g-C₃N₄ prior incorporating platinum into the composite. Whereas, for one-preparation technique Bi₂WO₆ is calcined first with platinum before the construction of z-scheme heterojunction with g-C₃N₄. RR4 were used as model pollutant to measure the photocatalytic performance of pt-Bi₂WO₆/g-C₃N₄. Characterization study employing FTIR, UV-Vis spectra. FESEM-EDX and XRD was conducted to characterized the composite. Based on the FTIR analysis aromatic C-N stretching vibration mode is detected in the region of 1200–1750 cm⁻¹. In addition, intense sharp peak appear around 810 cm⁻¹ is attributed to the breathing mode striazine units of CN. Further, in UV-Vis analysis, pristine Bi₂WO₆ has an absorption edge of approximately detected at 443 nm, which corresponds to a band gap of approximately 2.6 eV. The absorption edge of pure $g-C_3N_4$ was at about 457 nm, corresponding to the band gap of 2.8 eV. The fabrication of heterojunction of the composite results in gradual red-shift and the introduction of platinum results in even lower the band gap energy. The crystallinity size of the prepared photocatalysts was determined by XRD diffraction where Scherrer equation is applied to calculate the size magnitude In XRD, the diffraction angle of Bi₂WO₆ exhibits at 28.6° , 33.1° , 47.4° , 56.2° , 59.1° , 69.2° and 78.8° and these diffraction angle also can be seen the other composite. All of the modified and unmodified Bi₂WO₆/g-C₃N₄ have shown photocatalytic degradation efficiency up to 50% and the composite prepared by the means of one step offers the outstanding performance achiving 80% photodegradation activity of RR4 dye.

TABLE OF CONTENTS

ABSTRACT	iii	
ACKNOWLEDGEMENT	v	
TABLE OF CONTENTS	vi	
LIST OF FIGURES	ix	
LIST OF ABBREVIATIONS	Х	
CHAPTER 1 INTRODUCTION		
1.1 Background of Study	1	
1.2 Problem Statement	3	
1.3 Research Question	4	
1.4 Objectives of study	5	
1.5 Significance of Study	5	
1.6 Expected Outcomes	6	
1.0 Expected Outcomes	0	
CHAPTER 2 LITERATURE REVIEW		
2.1 Photocatalysis	7	
2.2 Bi ₂ WO ₆ as Photocatalyst	11	
2.3 g-C3N ₄ as Photocatalyst	12	
2.4 Modification of Bi2WO6 via doping		
2.4.1 Modification with metal	14	
2.4.2 Modification with non-metal	15	
2.4.3 Modification via coupling with semiconductor	16	
2.5 Z-scheme heterojunction		
2.5.1 Z-Scheme Platinum doped Bi ₂ WO ₆ /g-C ₃ N ₄	19	
2.6 Hydrothermal synthesization	19	
2.7 Preparation of Bi_2WO_6/g - C_3N_4 via hydrothermal synthesization	21	

2.7.1 Preparation of Bi_2WO_6/g -C ₃ N ₄ via batchwise technique	22
2.7.2 Preparation of $Bi_2WO_6/g-C_3N_4$ via one-step preparation method	23
2.8 Reactive Red 4	23

CHAPTER 3 METHODOLOGY

3.1 Chemicals/ Reagents	
3.2 Apparatus & materials	25
3.3 Synthesization of $Bi_2WO_6/g-C_3N_4$	
3.3.1 One-step preparation	25
3.3.2 Batchwise preparation	36
3.4 Preparation of g-C ₃ N ₄ doped Pt-Bi ₂ WO ₆	26
3.5 Characterization study	27
3.6 Optimization of Pt-Bi ₂ WO ₆ /g-C ₃ N ₄	27
3.6.1 Photocatalytic degradation of RR4 dye	27
3.7 Control Study	28
3.8 Flow Chart Methodology	29

CHAPTER 4 RESULTS AND DISCUSSION

4.1	1.1 Characterization study of Pt-Bi ₂ WO ₆ / g-C ₃ N ₄	
	4.1.1 FTIR spectra of Bi ₂ WO ₆ and g-C ₃ N ₄	30
	4.1.2 Uv-Vis spectra of unmodified & modified Bi ₂ WO ₆	31
	4.1.3 Photoluminescence Analysis	33
	4.1.4 FESEM-EDX images of unmodified & modified Bi ₂ WO ₆ and PBCN	34
	4.1.5 XRD result of the composite	36
4.2 Photoelectrochemical test (PEC) for the as-synthesized samples		37
4	4.2.1 Electrochemical impedance spectroscopy (EIS)	37
2	4.2.2 Linear Sweep Voltammetry (LSV)	40
Z	4.2.3 Chronoamperometry (CA)	41
4.3 Photocatalytic degradation and optimization study		44