ENHANCEMENT OF CORROSION INHIBITION EFFICIENCY OF SUS304 IN ACIDIC COCONUT HUSK EXTRACT IN THE PRESENCE OF HALIDE ION

NUR IZZATUL AZWANI BINTI SHARIFFUDDIN

BACHELOR OF SCIENCE (Hons.)
APPLIED CHEMISTRY
FACULTY OF APPLIED SCIENCES
UNIVERSITI TEKNOLOGI MARA

AUGUST 2024

SUBMISSION FOR EVALUATION FINAL YEAR PROJECT 2 - RESEARCH PROJECT

ENHANCEMENT OF CORROSION INHIBITION EFFICIENCY OF SUS304 IN ACIDIC COCONUT HUSK EXTRACT IN THE PRESENCE OF HALIDE ION

Name : NUR IZZATUL AZWANI BINTI SHARIFFUDDIN

Student ID : 2022913081

Program : AS245 Course code : FSG671

Mobile Phone :

E-mail : 2022913081@student.uitm.edu.my

Approval by Main Supervisor:

I certify that the work conducted by the above student is completed and approve this report to be submitted for evaluation.

Supervisor's name : DR SOLHAN BINTI YAHYA

Date : 26 JULY 2024

Turnitin Similarity % : 28%

Signature :

^{*} Please attach the Turnitin summary report, with your name clearly stated, at the end of your report and submit it together.

ENHANCEMENT OF CORROSION INHIBITION EFFICIENCY OF SUS304 IN ACIDIC COCONUT HUSK EXTRACT IN THE PRESENCE OF HALIDE ION

NUR IZZATUL AZWANI BINTI SHARIFFUDDIN

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Applied Chemistry in the Faculty of Applied Sciences Universiti Teknologi MARA

AUGUST 2024

TABLE OF CONTENTS

ACKNOWLEDGEMENTS TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS LIST OF ABBREVIATIONS ABSTRACT ABSTRAK		Page iii iv vii ix xi xii xiii
CII	ADTED 1 INTRODUCTION	
1.1	APTER 1 INTRODUCTION Background of study	1
	Problem Statement	3
	Significance of study	4
	Objectives of study	5
СН	APTER 2 LITERATURE REVIEW	
2.1		6
	Factors contributing to corrosion	7
	Type of corrosion	8
	2.3.1 General corrosion	8
	2.3.2 Crevice corrosion	9
	2.3.3 Galvanic corrosion	9
	2.3.4 Pitting corrosion	10
	2.3.5 Erosion corrosion	11
2.4	Corrosion in acid environment	12
2.5	Corrosion prevention and control	12
	2.5.1 Pre-treatment	13
	2.5.2 Proper design and right selection	13
	2.5.3 Sacrificial method	14
	2.5.4 Barrier protection method	14
	2.5.5 Alteration in environment	15
	2.5.6 Corrosion inhibitor	15
2.6	Corrosion inhibitors	15
	2.6.1 Types of corrosion inhibitors	17
	2.6.2 Organic inhibitor plant extract	19
	2.6.3 Corrosion inhibitor in hydrochloric acid environment	20
2.7	Application of corrosion inhibitor in industry	21
	2.7.1 Oil and gas industry	21
	2.7.2 Cooling water industry	23
2.8	Plant extract as corrosion inhibitor	24
	2.8.1 Coconut husk	24

ABSTRACT

ENHANCEMENT OF CORROSION INHIBITION EFFICIENCY OF SUS304 IN ACIDIC COCONUT HUSK EXTRACT IN THE PRESENCE OF HALIDE ION

Corrosion is the consequence of unprotected stainless-steel exposure to a corrosive medium, resulting in uncontrolled chemical reactions that cause degradation. In this research, coconut husk as plant extract was investigated to inhibit corrosion of SUS304 in hydrochloric acid solution with the presence of halide ion by weight loss method. The coconut husk extract (CHE) contains phytochemical compounds such as lignin that can inhibit and reduce the corrosion effect. Moreover, the coconut husk possessed functional groups such as O-H, C-H, C=O, C=C and others that been identified via FTIR analysis. The results indicated that the inhibitory impact followed the sequence Cl⁻< Br⁻<l⁻. Furthermore, 1.5 g/L CHE with I⁻ inhibitor exhibited excellent corrosion inhibition efficiency, 97.89%. Optical analysis showed the corrosive effect on stainless steel surface was reduced due to the use of halides in the corrosion inhibitors. This research proved that the addition of halide enhanced the CHE as an environmentally beneficial corrosion inhibitor which has the potential to be used in industrial applications.