THE INFLUENCE OF TEMPERATURE AND TIME ON EXTRACTION OF LIGNIN USING HYDROPHOBIC DEEP EUTECTIC SOLVENT (HDES) AS PRETREATMENT OF CORN STOVER

NADIYATUL SHAFIQAH BINTI NUR HILMY

BACHELOR OF SCIENCE (Hons.) APPLIED CHEMISTRY FACULTY OF APPLIED SCIENCES UNIVERSITI TEKNOLOGI MARA

AUGUST 2024

SUBMISSION FOR EVALUATION FINAL YEAR PROJECT 2 - RESEARCH PROJECT

THE INFLUENCE OF TEMPERATURE AND TIME IN THE EXTRACTION OF LIGNIN USING HYDROPHOBIC DEEP EUTECTIC SOLVENT (HDES) AS PRETREATMENT OF CORN STOVER

Name	:	Nadiyatul Shafiqah binti Nur Hilmy
Student ID	:	2022937641
Program	:	Bachelor of Science (Hons.) Applied Chemistry
Course code	:	FSG671
Mobile Phone	:	012-9924416
E-mail	:	nadiyatul2010@gmail.com

Approval by Main Supervisor :

I certify that the work conducted by the above student is completed and approve this report to be submitted for evaluation.

Supervisor's name	:	Dr. Siti Nurlia binti Ali
Date	:	25 July 2024
Turnitin Similarity %	:	5%
Signature	:	

THE INFLUENCE OF TEMPERATURE AND TIME ON EXTRACTION OF LIGNIN USING HYDROPHOBIC DEEP EUTECTIC SOLVENT (HDES) AS PRETREATMENT OF CORN STOVER

NADIYATUL SHAFIQAH BINTI NUR HILMY

Final Year Project Proposal Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Applied Chemistry In The Faculty of Applied Sciences Universiti Teknologi MARA

AUGUST 2024

ABSTRACT

THE INFLUENCE OF TEMPERATURE AND TIME ON EXTRACTION OF LIGNIN USING HYDROPHOBIC DEEP EUTECTIC SOLVENT (HDES) AS PRETREATMENT OF CORN STOVER

The composition of lignocellulosic corn stover is found to be suitable for the production of bioethanol but the presence of lignin in the structure could inhibit the later enzymatic hydrolysis process. Previous studies on the pretreatment processes on a variety of lignocellulosic wastes (LCAWs) faces several disadvantages such as high energy consumption, difficulty in controlling the system, formation of inhibitors and toxicants, and the usage of expensive chemicals. Deep eutectic solvent (DES) was introduced in the effort to delignify corn stover and was found to achieve a good result with the use of a non-toxic solvent. Most of the previous studies uses hydrophilic DES and despite its green property, data on the use of hydrophobic DES (HDES) in delignification of corn stover has been lacking. In this study, the effect of temperature and time on extraction of lignin in corn stover using HDES were evaluated. Hydrophobicity of prepared solvent of octanoic acid : DL-menthol at 2:1 mole ratio was confirmed through formation of two layers when mixed with water. It was found that, the percent of lignin extracted by prepared HDES increases with increasing temperature of 50 °C to 125 °C with the lowest to the highest being at 61.16% and 86.33% respectively. This is due to the alteration of corn stover composition and decreases of viscosity of prepared HDES at high temperature, providing easier access to lignin in corn stover. Inversely, the increasing stirring time from 10 to 30 minutes lowers the percent of lignin extracted with 86.33% being the highest value and 30.93% being the lowest value. This could be due to the formation of pseudo-lignin at longer reaction time that attaches itself on the cellular surface and blocks the access to the inner part of corn stover structure. Lignin extraction was further confirmed through functional group analysis where weakened C-O and -OH groups of alcohol and C=C group for benzene ring peaks were observed which indicates the decrease of lignin content in the treated corn stover thus proving the effectiveness of prepared HDES in lignin removal as pretreatment of corn stover.

TABLE OF CONTENTS

	Page
ABSTRACT	ii
ABSTRAK	iii
ACKNOWLEDGEMENTS	iv
TABLE OF CONTENTS	V
LIST OF TABLES	vii
LIST OF FIGURES	viii
LIST OF ABBREVIATIONS	ix
LIST OF SYMBOLS	Х

CHAPTER 1: INTRODUCTION

Background of Study	1
Problem Statement	3
Significance of Study	5
Objectives	5
Experimental Design / Flow Chart	6
	Background of Study Problem Statement Significance of Study Objectives Experimental Design / Flow Chart

CHAPTER 2: LITERATURE REVIEW

2.1	Overview of Bioethanol Production	7
2.2	Corn Stover	8
2.3	Pretreatment Steps for Bioethanol Production	11
	2.3.1 Physical Pretreatment	12
	2.3.2 Biological Pretreatment	12
	2.3.3 Chemical Pretreatment	13
2.4	Deep Eutectic Solvents (DESs)	17
	2.4.1 DESs Pretreatment of LCAWs	18
	2.4.2 DESs as Pretreatment Solvent of Corn Stover	19
	2.4.3 Hydrophobic DES (HDES) as Pretreatment Solve	ent 20

CHAPTER 3: METHODOLOGY

3.1	Material, Chemicals and Instrumentation	22
	3.1.1 Material	22
	3.1.2 Chemicals and Instrumentation	23
3.2	Preparation of HDES	23
3.3	Preparation of Standard Lignin Solution	23
3.4	Extraction of Lignin in Corn Stover by HDES	24
3.5	Lignin Content Analysis using UV-Vis Spectrophotometer	24
3.6	Functional Group Analysis	26