ENHANCEMENT OF THE MECHANICAL AND PHYSICAL PROPERTIES OF THERMOPLASTIC CASSAVA STARCH REINFORCED BY BANANA PSEUDOSTEM FIBER

NADHIRAH AISHAH BINTI KAMARUZAMAN

BACHELOR OF SCIENCE (Hons.) APPLIED CHEMISTRY FACULTY OF APPLIED SCIENCES UNIVERSITI TEKNOLOGI MARA

AUGUST 2024

SUBMISSION FOR EVALUATION FINAL YEAR PROJECT 2 - RESEARCH PROJECT

ENHANCEMENT OF THE MECHANICAL AND PHYSICAL PROPERTIES OF THERMOPLASTIC CASSAVA STARCH REINFORCED BY BANANA PSEUDOSTEM FIBER

Name	:	NADHIRAH AISHAH BINTI KAMARUZAMAN
Student ID	:	2022786139
Program	:	AS245
Course code	:	FSG671
Mobile Phone	:	019-5413641
E-mail	:	2022786139@student.uitm.edu.my

Approval by Main Supervisor :

I certify that the work conducted by the above student is completed and approve this report to be submitted for evaluation.

Supervisor's name	:	DR. NOR HAFIZAH BINTI CHE ISMAIL
Date	:	26 July 2024
Turnitin Similarity %	:	26%
Signature	:	
	DR	NOR HAFIZAH CHE IOMAN

DR NOR HAFIZAH CHE ISMAIL Senior Lecturer Faculty Applied Sciences Universiti Teknologi MARA, Perlis

ENHANCEMENT OF THE MECHANICAL AND PHYSICAL PROPERTIES OF THERMOPLASTIC CASSAVA STARCH REINFORCED BY BANANA PSEUDOSTEM FIBER

NADHIRAH AISHAH BINTI KAMARUZAMAN

Final Year Project Report Submitted in Partial Fulfilment of The Requirements for the Degree of Bachelor of Science (Hons.) Applied Chemistry in the Faculty of Applied Sciences Universiti Teknologi MARA

AUGUST 2024

ABSTRACT

ENHANCEMENT OF THE MECHANICAL AND PHYSICAL PROPERTIES OF THERMOPLASTIC CASSAVA STARCH REINFORCED BY BANANA PSEUDOSTEM FIBER

In this study, composite films were prepared by using cassava starch and banana pseudostem fiber as a reinforcing filler. The composite films were produced using a casting technique, with varying fiber loadings of banana pseudostem fiber (2%, 4%, 6%, and 8%) and glycerol as a plasticizer. The amount of glycerol used was fixed at 25% of the dry weight of starch. The aim of this study is to investigate the effect of untreated and treated banana pseudostem fiber loading on the mechanical and physical properties of thermoplastic cassava starch. The findings indicated that the incorporation of banana pseudostem fiber, in general, enhanced the performance of the composite films. In addition, the TPCS/UBPF and TPCS/TBPF films exhibited a significant decrease in both density and moisture content. Composites that were reinforced by treated fiber exhibited higher mechanical strengths in comparison to the untreated fibers. The morphological images exhibited a favorable compatibility between the treated fiber (reinforcing agent) and matrix, resulting in enhanced tensile strength and Young's modulus. The Fourier transform infrared spectroscopy (FTIR) revealed the removal of hemicellulose at certain wavelengths in the alkali-treated composites. In summary, the application of an alkaline treatment to BPF enhances the performance of the composites reinforced with banana pseudostem fiber.

TABLE OF CONTENTS

ABSTRACT	iii
ABSTRAK	iv
ACKNOWLEDGEMENT	V
TABLE OF CONTENT	vi
LIST OF TABLES	viii
LIST OF FIGURES	ix
LIST OF SYMBOLS	Х
LIST OF ABBREVIATIONS	xi

CHAPTER 1 INTRODUCTION

1.1	Research background	1
1.2	Problem statement	4
1.3	Research questions	5
1.4	Objectives of study	5
1.5	Significance of study	6
1.6	Expected output/Outcomes/Implications	7

CHAPTER 2 LITERATURE REVIEW

2.1	Starch-based bioplastic		8
2.2	Banan	Banana pseudostem fiber as reinforcement material	
2.3	Extrac	ction method of natural fiber	13
	2.3.1	Chemical retting	13
	2.3.2	Water retting	14
	2.3.3	Dew retting	14
	2.3.4	Mechanical extraction	15
2.4	Chem	ical treatment of natural fiber	16
	2.4.1	Silane treatment	16
	2.4.2	Acetylation treatment	18
	2.4.3	Alkaline treatment	19
2.5	Banan	a fiber as reinforcing agent	21
	2.5.1	Tensile strength	21
	2.5.2	Water absorption	22
2.6	Application of natural fiber polymer composites		23
	2.6.1	Automobile sector	23
	2.6.2	Biomedical application (3D printing)	25

CHAPTER 3 RESEARCH METHODOLOGY

3.1	Mater	ials and chemicals	27
3.2	Method		27
	3.2.1	Extraction of banana pseudostem fiber	27