THE STUDY OF ORIENTED STRAND BOARD (OSB) FROM

ACACIA SPECIES WITH DENSITY OF 600 KG/M³

By

MOHD ZULHILMEE BIN MOHD DAUD

Final Project Submitted in Fulfillment of the Requirement for the Diploma in Wood Industry, Faculty of Applied Science, Universiti Teknologi Mara

April 2005

TABLE OF CONTENTS

TITLE	PA
APPROVAL SHEET	i
DEDICATION	ii
ACKNOWLEDGEMENT	iii
DECLARATION	iv
LIST OF TABLE	v
LIST OF FIGURES	vi
LIST OF PLATES	vii
LIST OF ABBREVIATIONS	viii
ABSTRACT	ix
ABSTRAK	х
CHAPTER	
1 INTRODUCTION	
1.1 Justification	1-2
1.2 Objective	3
2 LITERATURE REVIEW	
2.1 Acacia Species	4
2.1.1 Field Characteristic of Acacia	5
2.1.2 Chemistry and Toxicity	5
2.2 Wood Properties	6
2.2.1 Anatomical Properties	6
2.2.2 Physical properties	7
2.2.3 Mechanical Properties	7
2.3 Uses of Acacia mangium	8
2.4 History of Oriented Strand Board (OSB)	9
2.5 Structural of Board	10
2.5.1 Board Dimension	10
2.5.2 Particle Size and Shape	10
2.5.3 Particle Alignment	10
2.6 Applications	11

PAGE

TITLE	PAGE
3 MATERIALS AND METHOD	12-29
Manufacturing of OSB in Laboratory	12
3.1 Methodology	14-24
3.1.1 Raw Material	14
3.1.2 Debarking	15
3.1.3 Cut into Billets and Quarter	16
3.1.4 Stranding	16
3.1.5 Flaking	17
3.1.6 Pre drying	18
3.1.7 Screening	19
3.1.8 Drying	19
3.1.9 Blending and glue mixing	20
3.1.10 Mat Forming	21
3.1.11Cold press	22
3.1.12Hot press	23
3.1.13 Conditioning	24
3.1.14 Trimming	24
3.2 Testing Method	25-29
3.2.1 Thickness Swelling	26
3.2.2 Water Absorption	27
3.2.3 Bending testing (MOE and MOR)	28
3.2.4 Bulk Density	29
4 RESULTS AND DISCUSSION	30-38
4.1 Results	30
4.2 Bending test	
4.2.1 Modulus of Elasticity (MOE)	31-32
4.2.2 Modulus of Rupture (MOR)	33-34
4.2.3 Thickness Swelling	35-36
4.2.4 Water Absorption	37-38
5 CONCLUSION AND RECOMMENDATION	39-40
5.1 Conclusion	39
5.2 Recommendation	40
6 BIBLIOGRAPHY	41
7 APPENDIX	42-43
8 VITA	44

ACKNOWLEDGEMENT

First of all, I would like to thank the almighty Allah S.W.T for his blessing and favor in guiding me towards the completion of this final project paper.

To my respectful advisor Mr. Ahmad Fauzi bin Othman for appreciation for his comment, suggestion, advice and understanding towards in this final project and En. Wan Nazri b. Abd Rahman as the Head Program of Diploma in Wood Industry for guiding me to finish this final project paper.

I would like to offer my special thanks to Mr. Saimin and Mr. Jalali for their help to finish my final project and also the librarian at FRIM for helping me to get some information to prepare my final project paper.

To beloved friends, thanks for all of your helps in support and helping me to finish this final project.

Finally, my deepest and special appreciation goes to my beloved parents for their moral and financial support throughout the years of my study.

iii

Abstract of final project presented to the Universiti Teknologi MARA fulfillment of the

requirements for the Diploma in Wood Industry

ORIENTED STRAND BOARD (OSB) FROM ACACIA SPECIES WITH DENSITY OF 600 KG/M³

By

MOHD ZULHILMEE BIN MOHD DAUD

APRIL 2005

Oriented Strand Board (OSB) is a new type of wood composite, which is yet to be commercially produced in Malaysia or South East Asia region. Strength properties of OSB can compete with other board that ready in market such as plywood, particleboard and other panel product. In this final project paper, strength properties that I study are divided into two. Firstly are mechanical properties and secondly are physical properties. Mechanical properties that I study are to determine the Modulus of Rupture (MOR), Modulus of Elasticity (MOE) and Internal Bonding (IB). While for physical properties are to determine the percentage of Thickness Swelling (TS) and Water Absorption (WA) for the board. All these strength properties are comparing with British Standard. The strength properties of Oriented Strand Board (OSB) are from *Acacia Mangium* at 600 Kg/m³ Density with 5% and 7% resin content. From result, the board that suitable to make OSB for commercial is the board that uses 7% of resins.