PROPERTIES OF WOOD PLASTIC COMPOSITES FROM ON PALM EMPTY FRUIT BUNCH FIBERS

VERONICA GISIN

DIPLOMA IN WOOD INDUSTRY
UNIVERSITI TEKNOLOGI MARA
PAHANG
2006

ACKNOWLEDGEMENTS

All praise and thanks is to our mighty God, the One and only, and the indivisible creator and sustainer of the world. To him, we belong and to Him, we will return. I wish to thank Him for all that He has gifted for me, strength and blessing to complete my final project paper.

I would like to take this opportunity to thanks to my advisor, Mr. Shaikh Abdul Karim Yamani B. Zakaria, for his continuing support, guidance and excellent mentorship until completing this final project paper.

Also to Prof. Madya Dr. Jamaludin B. Kasim as my subject coordinator, for his guidance along the theoretical class, thanks for you concern. In addition, thanks so much to Mr. Fauzi, which was giving me the oil palm empty fruit bunch fibers as my raw material, not forgotten to Mrs. Sa'adiah Bt. Sahat and the entire persons, who were involved directly or indirectly along completing this project paper during manufacturing process and testing methods. To my beloved friend, Larisstina Sinteh, which was also doing wood plastic composites as her final project paper, thanks the helps and friendship along studying in UiTM Jengka, Pahang.

Finally, this final project paper could not been completed without the loves and supports from my beloved family, especially my beloved father and mother. Thanks for the supports which given to me, God Bless You All.

TABLE OF CONTENTS

	PAGE
APPROVAL SHEET	ii
DEDICATIONS	iii
ACKNOLEDGEMENTS	iv
LIST OF TABLES.	vii
LIST OF FIGURES	viii
LIST OF PLATES	ix
LIST OF ABBREVIATIONS	x
ABSTRACT	xi
ABSTRAK	xii
CHAPTED ONE	
CHAPTER ONE	
1.0 INTRODUCTION	1
1.1 Problem Statement	3
1.2 Justification	3
1.3 Objectives	4
CHAPTER TWO	
2.0 REVIEW OF LITERATURE	
2.1 The Oil Palm.	5
2.1.1 History	5
2.1.2 Natural Habitat	6
2.2 Plastic	7
2.2.1 Composition and Types of Plastic	7
2.2.2 Development of Plastics.	8
2.2.3 Moulding of Plastic.	9
2.2.4 Environmental Considerations	9
2.3 Polypropylene (PP)	10
2.4 Lignocellulosic Thermoplastic Composites	12
2.5 Potentials of Lignocellulosic Thermoplastic Composites	13

CHAPTER THREE

3.0 MATERIALS AND METHODS	
3.1 Source of Material	15
3.2 Bulk Density Determination	17
3.3 Particle Classification.	20
3.4 Flowchart of WPC Process	21
3.5 Material Preparation.	22
3.6 Blending Process	23
3.7 Compsoite Manufacturing	26
3.8 Composite Trimming	30
3.8.1 Bending Sample	30
3.8.2 Tensile, Water Absorption and Thickness Swelling Sample	31
3.9 Composite Testing.	33
3.9.1 Bending Test	33
3.9.2 Tensile Test.	35
3.9.3 Thickness Swelling And Water Absoprtion	35
CHAPTER FOUR	
4.0 RESULTS AND DISCUSSIONS	
4.1 Mechanical Properties	40
4.2 Physical Properties	49
CHAPTER FIVE	
5.0 CONCLUSIONS AND RECOMMENDATIONS	53
5.1 Recommendations	54
REFERENCES	55
APPENDICES	57
VITA	75

PROPERTIES OF WOOD PLASTIC COMPOSITES FROM OIL PALM EMPTY FRUIT BUNCH FIBERS

By

VERONICA GISIN

ABSTRACT

Wood Plastic Composites (WPC) was produced using unscreened fibers from oil palm (*Elaeis guineesnsis*) empty fruit bunch (EFB) fibers, mixed with PP. The effects of filler loadings at 10%, 30% and 50% was studied. The mechanical and physical testing was carried out according to American Society of Testing and Materials (ASTM). The mechanical properties such flexural modulus (FMOE) and tensile strength (TMOR) decreases as the amount of filler loadings increases. The physical properties, thickness swelling (TS) and water absorption (WA) increased at higher filler loadings. EFB fibers can be used as filler to produce WPC.