UNIVERSITI TEKNOLOGI MARA

THE ANTIMICROBIAL PROPERTIES OF MARINE ENDOPHYTIC FUNGI FROM MALAYSIAN GREEN SEAWEEDS

NURUL ADILLAH BINTI MOHD YASIM

BACHELOR OF PHARMACY

ACKNOWLEDGEMENT

First and foremost, I would like to thank Almighty Allah S.W.T in giving me strength and patience to complete this thesis. I would like to express my gratitude, deepest thanks and sincere appreciation to my thesis supervisor Dr. Siti Alwani binti Ariffin for her continuous support and limitless patience in guiding me throughout these two semesters. I really appreciate and thankful for her effort in mean of time and knowledge in helping me finished up this thesis. I am also thankful to her because allowing me to use her Marine Research Group (MaReG) laboratory to do this study.

I also would like to thank to Madam Noor Jannah binti Yob for helping me throughout these two semesters. She has been helping and giving advices throughout doing this study. Special thanks also dedicated to the lab assistants Mrs. Sarah, Mrs. Fatehah, Miss Khadijah and Mr. Shahrul Nizam for their kindness and helpfulness. Not forgotten to Miss Nur Atikah binti Alias for helping me no matter of time in finishing my lab works. They have being so helpful and without them, this thesis study will not complete.

I am also blessed with friendly and cheerful group of lab partners Mohd Syafiq Musleh, Nur Asyikin, Sayyidatul Solehah and Nora Awang Jalil for enlightening may research lab works. Special thanks also to Ahmad Bulqini Asyraf and Mohd Burhanuddin for helping and guiding me in finishing this thesis. Last but not the least, I am greatly acknowledge my parents for their understanding and support throughout my entire life.

TABLE OF CONTENTS

		Page
TITL	LE PAGE	
APPR	ROVAL FORM	
TABI	LE OF CONTENTS	i
LIST	OF TABLES	iii
	OF FIGURES	iv
	OF ABBREVIATIONS	V
ABST	TRACT	1
CHA	PTER ONE (INTRODUCTION)	
1.1	Background of study	2
1.2	Problem statements	3
1.3	Objective of study	5
CHA	PTER TWO (LITERATURE REVIEW)	
2.1	Natural products	6
2.2	Endophytes	7
	2.2.1 The isolation of endophytes from natural products	8
	2.2.2 The discovery of secondary metabolites from endophytes	9
	2.2.2 Exploitation of endophytes as sources of bioactive metabolites	
2.3	Terrestrial endophytes	11
	2.3.1 Bioactive compounds from terrestrial endophytes	12
	2.3.1.1 Antimicrobial compounds	13
	2.3.1.2 Anticancer compounds	14
	2.3.1.3 Antioxidant compounds	16
2.4	2.3.1.4 Other compounds	18
2.4	Marine endophytes 2.4.1 Seaweeds	18 20
	2.4.1 Seaweeds 2.4.2 Bioactive compounds from marine endophytes	21
	2.4.2.1 Antimicrobial compounds	22
	2.4.2.2 Anticancer compounds	23
	2.4.2.3 Antioxidant compounds	25
	2.4.2.4 Other compounds	26
СНА	PTER THREE (METHODS)	
3.1	Collection of samples	27
3.2	The isolation and identification of marine endophytic fungi	27
3.3	The extraction of marine endophytic fungi	28
3.4	Preparation of extraction	28
3.5	Antimicrobial activity of marine endophytic fungi	29
	3.5.1 Antibacterial activity	30
	3.5.2 Antifungal activity	32

ABSTRACT

Marine endophytic fungi that live inside seaweed have been studied widely for its active bioactivity. It has been reported that marine endophytic fungi have many bioactivity such as antimicrobial, antioxidant, anti-inflammatory, anticancer and many more. This study focused on the antimicrobial properties of the marine endophytic fungi of green seaweed and to find new sources of antimicrobial agents from natural sources. Twelve extracts (CS₁ PDA, CS₁ 3%, UF₁ PDA, UF₁ 3%, CR₁ PDA, CR₁ 3%, CR₂ PDA, CR₂ 3%, CR₃ PDA, CR₃ 3%, CF₁ PDA and CF₁ PDA) of the selected marine endophytic fungi (Caulerpa sertularioides, Caulerpa racemosa, Ulva fasciata and Codium fragile) were used in this study. The extracts were tested on six species of bacteria (Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa, Staphylococcus aureus, Salmonella enterica and Salmonella typhimurium) and three species of fungi (Aspergillus niger, Candida albicans and Trichophyton rubrum). Only seven out of twelve extracts exhibited antimicrobial properties. The most active extract was CS₁ PDA due to its active activity against pathogenic bacteria and fungi tested at moderate level. The highest inhibition of CS₁ PDA on bacteria was on E. coli with 15.14% followed by S. Enterica (11.30%), P. aeruginosa (10.53%), B. subtilis (8.91%), S. aureus (8.57%) and S. typhimurium (5.02%). Meanwhile, the highest diameter of zone inhibition of CS₁ PDA on Aspergillus niger was 7.25±0.35 mm, Candida albicans was 8.25±0.35 mm and Trichophyton rubrum was 7.50±0.71 mm.

Keywords: antimicrobial, green seaweed, Caulerpa sertularioides.

CHAPTER 1

INTRODUCTION

1.1 Background

Natural sources have been used as traditional medicine since ages ago by the old folks (Lincoln et al., 1991). Natural products are metabolites that are naturally derived and/or by-products from microorganism, plants or animals (Baker et al., 2000). Leaf, root and stem parts of the plants are considered as natural products (Strobel & Daisy, 2003). The role of natural products in pharmaceutical area was providing lead compounds that are suitable for further modification of drug development (Chin et al., 2006).

Endopyhtes are microbes which live inside of plants tissue without causing harm to the host and producing many bioactive natural compounds (Tan & Zou, 2001; Strobel & Daisy, 2003). Endophytes play symbiotic relationship with the host. The hosts provide nutrients simultaneously the endophytes produce metabolites that help the hosts in defence mechanism against insects, diseases and grazing animals. Endophytes also were believed to boost the host intolerance with drought or other environmental stress (Aldrich-Markham et al., 2007). Endophytes are isolated from two different environments which are terrestrial and marine. They are known as terrestrial endophytes and marine endophytes (Chin et al., 2006; Proksch et al., 2002).