ACCURACY ASESSMENT OF GLOBAL NAVIGATION SATELLITE SYSTEM (GNSS) POSITIONING SUBJECT TO THE UNDER-CANOPY AND BUILDING OBSTRUCTIONS

HARITH BIN MOHAMAD HASHIM 2022855766

SCHOOL OF GEOMATICS SCIENCE AND NATURAL RESOURCES COLLEGE OF BUILT ENVIRONMENT UNIVERSITI TEKNOLOGI MARA MALAYSIA

JULY 2024

ACCURACY ASSESSMENT OF GLOBAL NAVIGATION SATELLITE SYSTEM (GNSS) POSITIONING SUBJECT TO THE UNDER-CANOPY AND BUILDING OBSTRUCTIONS

HARITH BIN MOHAMAD HASHIM

2022855766

Thesis submitted to the Universiti Teknologi MARA Malaysia in partial fulfilment for the award of the degree of the Bachelor of Surveying Science and Geomatics (Honours)

JULY 2024

DECLARATION

I declare that the work on this project/dissertation was carried out in accordance with the regulations of Universiti Teknologi MARA (UiTM). This project/dissertation is original and it is the result of my work, unless otherwise indicated or acknowledged as referenced work.

In the event that my project/dissertation be found to violate the conditions mentioned above, I voluntarily waive the right of conferment of my degree of the Bachelor of Surveying Science and Geomatics (Honours) and agree be subjected to the disciplinary rules and regulations of Universiti Teknologi MARA.

Name of Student	: Harith Bin Mohamad Hashim
Student's ID No	: 2022855766
Project/Dissertation Title	: Accuracy Assessment of Global Navigation Satellite
	System (GNSS) Positioning Subject to The Under-
	Canopy and Building Obstructions
Signature and Date	:

Approved by:

I certify that I have examined the student's work and found that they are in accordance with the rules and regulations of the School and University and fulfils the requirements for the award of the degree of Bachelor of Surveying Science and Geomatics (Honours).

Name of Supervisor	: Mohamad Asrul Bin Mustafar
Signature and Date	:

ABSTRACT

Research and development in Global Navigation Satellite Systems (GNSS) have significantly advanced the geomatics profession, providing solutions for challenging conditions like canopy cover and building obstructions. However, satellite signal interference remains a concern, potentially affecting positioning accuracy. This study examines the effects of under-canopy and building obstructions on 3D positioning, focusing on the reliability of Conventional RTK (CRTK) and Network RTK (NRTK) solutions, and the significant impact on Network Static (NS) solutions. The concern revolves around understanding how varying levels of obstruction specifically at 25%, 50%, 75%, and 100% impact GNSS performance. Results indicate that RTKC provides reliable horizontal measurements but struggles with vertical accuracy under dense canopy, improving in less obstructed environments and remaining stable against building interference. NRTK outperforms RTKC and NS in vertical measurements under canopy but is sensitive to partial obstructions, while performing better than NS in building-obstructed environments. NS demonstrates resilience in moderately dense and reduced canopy environments but suffers significantly in dense canopy and building obstructions, leading to the highest displacement differences. These findings indicate that GNSS methodology should be chosen based on specific environmental conditions and the need for measurement accuracy. RTKC and NRTK are versatile and reliable across various conditions, while NS requires careful consideration due to its higher sensitivity to obstructions. This study provides valuable insights for selecting suitable GNSS methodologies for accurate positioning in challenging environments.

Keywords: Global Navigation Satellite System (GNSS), Conventional Real-Time Kinematic (CRTK), Network Real-Time Kinematic (NRTK), Network Static (NS), Under-Canopy and Building Obstructions.

TABLE OF CONTENTS

CHAPTER

TITLE

PAGE

CONFIRMATION BY PANEL OF EXAMINERS	ii
DECLARATION	iii
ABSTRACT	iv
ACKNOWLEDGEMENT	v
TABLE OF CONTENT	vi
LIST OF FIGURES	Х
LIST OF TABLES	xiii
LIST OF ABBREVIATIONS	xiv

1 INTRODUCTION

1.1	Background Study	15
1.2	2 Problem Statement	17
1.3	B Research Aim	18
1.4	Research Objectives	19
1.5	5 Significance of Study	19
1.6	5 Scope and Limitation of Study	20

2 LITERATURE REVIEW

2.1	Introduction	21
2.2	Overview of GNSS System	22
2.3	GNSS Technology and Positioning	23
2.4	GNSS Positioning in Obstructed Environment	25
2.5	Factors Influencing GNSS Accuracy in Obstructed	27
Envir	ronment	
2.6	Mitigation Techniques for GNSS Accuracy	29
Impro	ovement	
2.7	GNSS Observation Techniques	31